Answer:
4
Explanation:
the temperature at and above which vapor of the substance cannot be liquefied, no matter how much pressure is applied.
Answer:
W = 8.01 × 10^(-17) [J]
Explanation:
To solve this problem we need to know the electron is a subatomic particle with a negative elementary electrical charge (-1,602 × 10-19 C), The expression to calculate the work is given by:
W = q*V
where:
q = charge = 1,602 × 10^(-19) [C]
V = voltage = 500 [V]
W = work [J]
W = 1,602 × 10^(-19) * 500
W = 8.01 × 10^(-17) [J]
Answer:
A
Explanation:
Let the x represent the amount of heat generated from the fossil fuel.
88% of x = 0.88 x
0.88 x was used to convert water to steam.
heat carried by steam = 40% × 0.88 x = 0.352 x
efficiency of the heat -to- work conversion = work output / work input = 0.352 x / x = 0.352 × 100 = 35.2 % which is less than 40 %
Hello!
Recall the period of an orbit is how long it takes the satellite to make a complete orbit around the earth. Essentially, this is the same as 'time' in the distance = speed * time equation. For an orbit, we can define these quantities:
← The circumference of the orbit
speed = orbital speed, we will solve for this later
time = period
Therefore:

Where 'r' is the orbital radius of the satellite.
First, let's solve for 'v' assuming a uniform orbit using the equation:

G = Gravitational Constant (6.67 × 10⁻¹¹ Nm²/kg²)
m = mass of the earth (5.98 × 10²⁴ kg)
r = radius of orbit (1.276 × 10⁷ m)
Plug in the givens:

Now, we can solve for the period:

Answer:
Temperature at the exit = 
Explanation:
For the steady energy flow through a control volume, the power output is given as

Inlet area of the turbine = 
To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.
Assuming Argon behaves as an Ideal gas, we have the specific volume 
as


for Ideal gasses, the enthalpy change can be calculated using the formula

hence we have


<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>
evaluating the above equation, we have 
Hence, the temperature at the exit = 