Answer:
Option A
Explanation:
The Equation represents the displacement of the object which is represented by x

so,
means when time is zero so we replace t with zero in the equation,

now for v which is velocity we need to differentiate the function as the formula for velocity is rate of change of displacement over time so we derivate the equation once and get,

now for
we insert t = 0 and get

now for a which is acceleration the formula of acceleration is rate of change of velocity over time, so we differentiate the the equation of v(velocity) once or the equation of x(displacement) twice so now we get,

so Option A is your answer.
Remember derivative of a constant is always zero because a constant value has no rate of change has its a constant hence the derivative is 0
The answer is 45 i hope i could help
The Sun is 149.6 million kilometers from the earth.
There are 8760 hours in a year.
876000 km are traveled in a year
It would take 170.776 years to reach the sun, or 171 years rather
<span>We know , E = kQ/r^2 where q = charge and r is separation between point and point charge.
Now, At P, E= kQ/r^2
Since, Q can't be changed, we can do that by varying r
2E = 2kq/r^2
2E = kq/ (r/ sqrt2)^2
Hence, if we bring Q closer such that distance between P and Q becomes r/ sqrt 2, E will get doubled.</span>
Answer:
Δ KE = 249158.6 kJ
Explanation:
given data
Truck mass M = 1560 Kg
Truck initial speed, u = 28 m/s
mass of car m = 1070 Kg
initial speed of car u1 = 0 m/s
solution
first we get here final speed by using conservation of momentum that is express as
Mu = (M+m) V .......................1
put here value we get
1560 × 28 = (1560 + 1070 ) V
solve it we get
final speed V = 16.60 m/s
and
Change in kinetic energy will be here
Δ KE =
.................2
put here value and we get
Δ KE =
solve it we get
Δ KE = 249158.6 kJ