Answer:
(e)
Explanation:
At resonance we know that 
That is 



We have given resonance frequency f =4511 Hz and inductance L=1.82 mH
So 



So option e is the correct answer
Answer:
Approximately
, assuming that this gas is an ideal gas.
Explanation:
- Let
and
denote the volume and pressure of this gas before the compression. - Let
and
denote the volume and pressure of this gas after the compression.
By Boyle's Law, the pressure of a sealed ideal gas at constant temperature will be inversely proportional to its volume. Assume that this gas is ideal. By this ideal gas law:
.
Note that in Boyle's Law,
is inversely proportional to
. Therefore, on the two sides of this equation, "final" and "initial" are on different sides of the fraction bar.
For this particular question:
.
.
.- The pressure after compression,
, needs to be found.
Rearrange the equation to obtain:
.
Before doing any calculation, think whether the pressure of this gas will go up or down. Since the gas is compressed, collisions between its particles and the container will become more frequent. Hence, the pressure of this gas should increase.
.
To calculate the mass of the body moving, we use Newton's second law of motion which is F = ma where F is the force, m is the mass of the object and a is its acceleration.
F = ma
44 = m(15.3)
m = 2.9 kg
The mass of the rocket would be 2.9 kg.
Answer:
a)
0.245 m/s
b)
0.904 m
Explanation:
a)
= speed of duck ahead of wave
= speed of surface wave = 0.32 m/s
T = time for paddling = 1.6 s
d = spacing between the waves = 0.12 m
speed of duck ahead of wave is given as
=
- 
= 0.32 - 
= 0.245 m/s
b)
= speed of wave behind the duck
speed of wave behind the duck is given as
=
+ 
= 0.32 + 0.245
= 0.565 m/s
D = spacing between the crests
spacing between the crests is given as
D =
T
D = (0.565) (1.6)
D = 0.904 m
<span>v=u+at</span>
<span>
0=5.0283−9.8×t</span><span>
t=0.5130sec</span><span>
Total time = 2t = 1.0261 sec</span>