1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
creativ13 [48]
2 years ago
12

(20 points) A 1 mm diameter tube is connected to the bottom of a container filled with water to a height of 2 cm from the bottom

. Air flows from the tube into the liquid and creates spherical bubbles with diameter about the diameter of the tube (1 mm). Everything is at 298 K. The tube is short but is connected to a much longer 2 m long hose that is 6 mm in diameter. The hose is connected to the gas supply. If there is no gas flow the water will leak into the tube and into the supply hose. When gas flows the water is blocked from entering the tube and bubbling starts. State all assumptions in answering the following questions. (a) What should be the minimum air flow rate and the gas supply pressure to keep the water from leaking back into the tube? (b) Is the flow in the hose laminar or turbulent? Is the flow in the tube laminar or turbulent?
Engineering
1 answer:
zzz [600]2 years ago
3 0

Solution :

Given :

h = 2 cm

Diameter of the tube , d = 1 mm

Diameter of the hose, D = 6 mm

Between 1 and 2, by applying Bernoulli's principle, we get

As point 1 is just below the free surface of liquid, so

$P_1=P_{atm} \text{ and} \ V_1=0$

$\frac{P_{atm}}{\rho g}+\frac{v_1^2}{2g} +h = \frac{P_2}{\rho g}$

$\frac{101.325}{1000 \times 9.81}+0.02 =\frac{P_2}{\rho g}$

$P_2 = 111.35 \ kPa$

Therefore, 111.325 kPa is the gas supply pressure required to keep the water from leaking back into the tube.

Velocity at point 2,

$V_2=\sqrt{\left(\frac{111.135}{\rho g}+0.02}\right)\times 2g$

   = 1.617 m/s

Flow of water,  $Q_2 = A_{tube} \times V_2$

                               $=\frac{\pi}{4} \times (10^{-3})^2 \times 1.617 $

                               $1.2695 \times 10^{-6} \ m^3/s$

Minimum air flow rate,

$Q_2 = Q_3 = A_{hose} \times V_3$

$V_3 = \frac{Q_2}{\frac{\pi}{4}D^2}$

$V_3 = \frac{1.2695 \times10^{-6}}{\pi\times 0.25 \times 36 \times 10^{-6}}$

    = 0.0449 m/s

b). Reynolds number in hose,

$Re = \frac{\rho V_3 D}{\mu} = \frac{V_3 D}{\nu}$

υ for water at 25 degree Celsius is $8.9 \times 10^{-7} \ m^2/s$

υ for air at 25 degree Celsius is $1.562 \times 10^{-5} \ m^2/s$

$Re_{hose}=\frac{0.0449 \times 6 \times 10^{-3}}{1.562 \times 10^{-5}}$

           = 17.25

Therefore the flow is laminar.

Reynolds number in the pipe

$Re = \frac{V_2 d}{\nu} = \frac{1.617 \times 10^{-3}}{8.9 \times 10^{-7}}$

                = 1816.85, which is less than 2000.

So the flow is laminar inside the tube.

You might be interested in
Nothing. i have nothing to say but that. other than that im good. :))))
ohaa [14]

Answer:

aw good <3

Explanation:

4 0
3 years ago
How does emotion affect a persons driving
Elodia [21]

Answer:

if ur mad you may drive faster if ur sad u may drive slower due to the amount of adrenaline and dopamine levels in your body in that given moment

Explanation:

4 0
3 years ago
Five kilograms of air at 427°C and 600 kPa are contained in a piston–cylinder device. The air expands adiabatically until the pr
son4ous [18]

Answer:

The entropy change of the air is 0.240kJ/kgK

Explanation:

T_{1} =427+273K,T_{1} =700K\\P_{1} =600kPa\\P_{2} =100kPa

T_{2}  is unknown

we can apply the following expression to find T_{2}

-w_{out} =mc_{v} (T_{2} -T_{1} )

T_{2} =T_{1} -\frac{w_{out } }{mc_{v} }

now substitute

T_{2} =700K-\frac{600kJ}{5kg*0.718kJ/kgK} \\T_{2}=533K

To find entropy change of the air we can apply the ideal gas relationship

Δs_{air}=c_{p} ln\frac{T_{2} }{T_{1} } -Rln\frac{P_{2} }{P_{1} }

Δs_{air} =1.005*ln(\frac{533}{700})-0.287* in(\frac{100}{600} )

Δs_{air} =0.240kJ/kgK

4 0
3 years ago
Expalin the application of diesel cycle in detail.
mars1129 [50]

Explanation:

Diesel cycle:

        All diesel engine work on diesel cycle .In diesel cycle there are four process .These processes are as follows

1. Adiabatic reversible compression

2.Heat addition at constant pressure

3.Adiabatic reversible expansion

4.Constant volume heat rejection

In general compression ratio in diesel engine is high as compare to petrol engine.But the efficiency of diesel cycle is less as compare to petrol cycle for same compression ratio.

Applications of diesel cycle:

Generally diesel cycle used for heavy vehicle or equipment because heavy vehicle or equipment is required high initial torque.So this cycle have lots of applications such as in industrial machining,in trucks,power plant,in mining ,in defense or military,large motors ,compressor and pump etc.

   

5 0
3 years ago
The article provides information by using a list. What does it list? A. Thanksgiving food B. places where clams can be found C.
Gelneren [198K]

Answer:

C

Explanation:

7 0
3 years ago
Other questions:
  • The following laboratory tests are performed on aggregate samples:a. Specific gravity and absorptionb. Soundnessc. Sieve analysi
    13·1 answer
  • An FCC iron-carbon alloy initially containing 0.20 wt% C is carburized at an elevated temperature and in an atmosphere wherein t
    6·1 answer
  • Number the statements listed below in the order that they would occur in engine operation. Then, label these stages as intake, c
    14·1 answer
  • We need to design a logic circuit for interchanging two logic signals. The system has three inputs I1I1, I2I2, and SS as well as
    11·1 answer
  • If you add 10 J of heat to a system so that the final temperature of the system is 200K, what is the change in entropy of the sy
    9·1 answer
  • A microwave transmitter has an output of 0.1 W at 2 GHz. Assume that this transmitter is used in a microwave communication syste
    8·1 answer
  • A 0.91 m diameter corrugated metal pipe culvert (n = 0.024) has a length of 90 m and a slope of 0.0067. The entrance has a squar
    5·1 answer
  • .If aligned and continuous carbon fibers with a diameter of 6.90 micron are embedded within an epoxy, such that the bond strengt
    11·1 answer
  • What are the four types of physical hazards?
    13·2 answers
  • Why do you think there are so many different kinds of can openers?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!