[H+] in first brand:
4.5 = -log([H+])
[H+] = 10^(-4.5)
[H+] in second brand:
5 = -log[H+]
[H+] = 10^(-5)
Difference = 10^(-4.5) - 10^(-5)
= 2.2 x 10⁻⁵
The answer is A.
The largest in size usually attracks a population of what it is and whether the people think it is popular
Answer: SO₂ + H₂O → HSO₃ ⁻ + H⁺
Justification:
1) Ionization means formation of ions.
2) Ions are species that are not neutral, they are charged, in virtue of having less or more electrons than protons.
3) Ionization may happen in different environments.
4) Ionic compunds, like Mg(OH)₂ dissociate into ions (ionize) in water. That is the example shown in the fourth option:
Mg(OH)₂ → Mg ²⁺ + 2OH⁻
5) How much a ionic compound dissociates in water (ionize) depends on the Ksp (product solubility constant) which measures the concentrations of the ions that can be in the solution.
6) The Ksp for Mg(OH)₂ is very low, meaning that it will slightly ionize.
7) SO₂ + H₂O forms H₂SO₄, which is a strong acid, meaning that it will ionize fully in water, into the ions HSO₃ ⁻ and H⁺, so the third option is a good example of ionization.
2. Rubidium
3. Antimony
4. Ytterbium
5. Einsteinium
Answer:
NH3 has greater water solubility due to intermoleculate interactions
Explanation:
Hi:
If we represent the structures of NH3 and SbH3 we can see that they are similar to the naked eye, this is because N and Sb belong to the same group of the periodic table (group 15).
However, the electronegativity of N is greater than that of Sb. The NH3 molecule is polar and can form an intermolecular interaction called hydrogen bridge with water.
Sb is less electronegative than N. The SBH3 molecule forms an intermolecular interaction with water called dipole-induced dipole.
The zone with positive charge density of the water molecule (hydrogens) is oriented towards the zone with positive charge density of SBH3 (the pair of electrons not shared)
Stronger intermolecular junctions allow greater solubility of NH3 molecules.
Successes in your homework