Answer:
You take the light from a star, planet or galaxy and pass it through a spectroscope, which is a bit like a prism letting you split the light into its component colours. "It lets you see the chemicals being absorbed or emitted by the light source. From this you can work out all sorts of things," says Watson
Answer:
Light wave is an EM wave that can only be seen by humans New questions in Physics Engineers at the Space Centre must determine the net force needed for a rockets engine to achieve an acceleration of 70 m/s2.
Explanation:
2.57 joule energy lose in the bounce
.
<u>Explanation</u>:
when ball is the height of 1.37 m from the ground it has some gravitational potential energy with respect to hits the ground
Formula for gravitational potential energy given by
Potential Energy = mgh
Where
,
m = mass
g = acceleration due to gravity
h = height
Potential energy when ball hits the ground
m= 0.375 kg
h = 1.37 m
g = 9.8 m/s²

Potential Energy = 5.03 joule
Potential energy when ball bounces up again
h= 0.67 m

Potential Energy = 2.46 joule
Energy loss = 5.03 - 2.46 = 2.57 joule
2.57 joule energy lose in the bounce
Answer:
D
Explanation:
Newtons first law states that if an object is at rest it will stay at rest only if an unbalanced force acts on it. As well as if an object is in motion it will stay in motion unless an unbalanced force acts on it.
Ps- The object will stay moving in the same speed and direction.
Answer
given,
Speed of car A = 95 Km/h
= 95 x 0.278 = 26.41 m/s
Speed of Car B = 121 Km/h
= 121 x 0.278 = 33.64 m/s
Distance between Car A and B at t=0 = 41 Km
a) Distance travel by car B
d = 26.41 t + 41000
speed of the car A = 33.64 m/s
distance = s x t
26.41 t + 41000 = 33.64 x t
7.23 t = 41000
t = 5670.82 s
time taken by Car B to cross Car A is equal to t = 5670.82 s
distance traveled by car A
D = s x t = 26.41 x 5670.82 = 149766.25 m = 149.76 Km
b) distance travel by the car B in 30 s after overtaking car A
D' = s x t = 33.64 x 30 = 1009.2 m = 1 Km