Answer:
d = 68.5 x 10⁻⁶ m = 68.5 μm
Explanation:
The complete question is as follows:
An optical engineer needs to ensure that the bright fringes from a double-slit are 15.7 mm apart on a detector that is 1.70m from the slits. If the slits are illuminated with coherent light of wavelength 633 nm, how far apart should the slits be?
The answer can be given by using the formula derived from Young's Double Slit Experiment:

where,
d = slit separation = ?
λ = wavelength = 633 nm = 6.33 x 10⁻⁷ m
L = distance from screen (detector) = 1.7 m
y = distance between bright fringes = 15.7 mm = 0.0157 m
Therefore,

<u>d = 68.5 x 10⁻⁶ m = 68.5 μm</u>
Answer:
v =2.02
Explanation:
v^2=0.05-4.9
v^2=-4.85
square root both side
v=2.02
^^^^this is a not a perfect square
This equation will be balanced if the x is a 2 because there are two sodiums on the reactants sides so there must be two sodiums on the products side
Hope this helps
Because even though the moon is smaller, therefore a weaker gravitational pull, the moon is much closer to the earth than the sun, thus having a greater gravitational pull
I’m so sorry, I need more information. Good luck and I’m sorry I couldn’t help you :(