I think it was Isaac Newton
The mass of Mars is smaller than that the mass of Earth, therefore the acceleration of gravity on Mars is much less than that the acceleration of gravity of the Earth.
The weight of an object is directly proportional to the magnitude of the gravitational acceleration of the planet where it is.
In this case, the gravitational acceleration in Mars is 3.711 m/s² and that of the planet Earth is 9.807 m/s².
The acceleration of gravity on Earth is 2.63 times greater than that the acceleration of gravity on Mars. This explains that the same object weighs 263% more on earth
Answer:
a) A1 = 
b) A1 = 2.688 cm
c) Q1 = A1 x v1
d) v1 = 3.1994 m/s
e) A2 = 
f) A2 = 0.7963cm
Explanation:
a) Area = 
r = 
thus,
area = 
A1 = ![\frac{\pi (d1)^{2} }{4}[/tex]b) d1 = 1.85 cmsubstituting in the above equation,A1 = [tex]\frac{\pi (d1)^{2} }{4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cpi%20%28d1%29%5E%7B2%7D%20%7D%7B4%7D%5B%2Ftex%3C%2Fstrong%3E%5D%3C%2Fp%3E%3Cp%3E%3C%2Fp%3E%3Cp%3Eb%29%20d1%20%3D%201.85%20cm%3C%2Fp%3E%3Cp%3Esubstituting%20in%20the%20above%20equation%2C%3C%2Fp%3E%3Cp%3EA1%20%3D%20%20%5Btex%5D%5Cfrac%7B%5Cpi%20%28d1%29%5E%7B2%7D%20%7D%7B4%7D)
A1 = 
A1 = 2.688 cm
c) Flow rate = Area x velocity ( refer brainly.com/question/13997998)
Q1 = A1 x v1
d) From the above equation,
v1 =
=
= 319.94 cm/s = 3.1994 m/s
e) Since the flow rate Q1 is constant throughout the hose, Av is a constant.
i.e. A1 x v1 = A2 x v2
thus,
A2 = 
f) v2 = 10.8 m/s.
substituting the values in the above equation,
A2 =
= 0.7963cm
Microwaves. Microwave radiation can be used to transmit signals such as mobile phone calls. ... Certain microwave radiation wavelengths pass through the Earth's atmosphere and can be used to transmit information to and from satellites in orbit
Answer:
Impulse = 80Ns
Explanation:
Given the following data;
Mass = 3kg
Force = 20N
Time = 4 seconds
To find the impulse experienced by the object;
Impulse = force * time
Impulse = 20*4
Impulse = 80Ns
Therefore, the impulse experienced by the object is 80 Newton-seconds.