1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
3 years ago
8

Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value

of θ when these two points coincide. (0 ≤ θ < 2π)
Show your work, thanks!​
Mathematics
1 answer:
vodomira [7]3 years ago
5 0

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

You might be interested in
If 7 is added to a number then it becomes at least 15 what is the number?​
Whitepunk [10]
You’re answer will be 8 ;)
8 0
3 years ago
Read 2 more answers
Write a story that could represent this math problem. A rectangle partitioned into thirds five times. The first part, the second
SSSSS [86.1K]

Answer:

The problem is 5 × 2/3 so

Billy paycheck every week was 2/3 a dollar which is approximately 66 cents but one day he did fantastic and got a raise and the raise was 5 times his last paycheck how much money is Billy new paycheck? So we do 5 × 2/3 and that equals 10/3, or 3 1/3, or 3 dollars and 30 cents.

Step-by-step explanation:

just copy and paste it.

7 0
2 years ago
If gross pay increases by $500, total employee benefits increase by $200 and total job expenses decrease by $300, then total emp
Vesnalui [34]
The correct answer is D!! 
4 0
3 years ago
Read 2 more answers
carlos finish 1/3 of his art project on monday tyler finished 1/2 of his art project on monday who finished more of his art proj
marysya [2.9K]
Tyler finished more.
7 0
3 years ago
Read 2 more answers
To cover a rectangular region of her yard, Penny needs at least 155 square feet of sod. The length of the
Tasya [4]

<u><em>To cover a rectangular region of her yard, Penny needs at least 170.5 square feet of sod. The length of the region is 15.5 feet. What are the possible widths of the region?</em></u>

<u><em></em></u>

<u><em>L=length=15.5 ft; W=width; A=area=>170.5 sq ft</em></u>

<u><em></em></u>

<u><em>L*W=>170.5 sq ft Divide each side by L</em></u>

<u><em></em></u>

<u><em></em></u>

<u><em>W=>170.5 sq ft/L</em></u>

<u><em></em></u>

<u><em>W=>170.5 sq ft/15.5 ft=>11 feet</em></u>

<u><em></em></u>

ANSWER: To cover at least 170.5 sq ft. the width must be at least 11 feet.

<h2><em><u>Brainly pls</u></em></h2>

5 0
2 years ago
Other questions:
  • Pls help!!!!!!!! Will give brainliest!!!!!!!!!!!
    11·1 answer
  • The minimum value of a function is the smallest y-value of the function. A. True B. False
    8·1 answer
  • MARKING BRAINLEST!! PLEASE ANSWER BOTH!!!
    14·1 answer
  • A store wants to sell a blanket for X dollars. From the market research they know that the price of this blanket must be at most
    15·1 answer
  • What is the value of Y when x=3 if the equation of the regression line is y=3.8X+ 23.1
    8·1 answer
  • Helllppppppp please
    11·1 answer
  • Write the equation of the line that is parallel to y=4x-1 and passes through the point (4.9)
    6·1 answer
  • candy bars have increased in price by 8% in recent years. if today’s price is approximately $1.60, how much was the original pri
    11·2 answers
  • A print shop ordered 4 shipments of newsprint. There were 23,321 sheets of newsprint in each shipment. How many sheets of newspr
    14·1 answer
  • Pls help me solve this pls
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!