1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
3 years ago
8

Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value

of θ when these two points coincide. (0 ≤ θ < 2π)
Show your work, thanks!​
Mathematics
1 answer:
vodomira [7]3 years ago
5 0

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

You might be interested in
Which number can be divisible by 7 3 and 4​
siniylev [52]
1 is the answer!! Hope this helps
6 0
3 years ago
Read 2 more answers
A conjecture and the flowchart proof used to prove the conjecture are shown.
pishuonlain [190]

Answer:

∠1 is supplementary to ∠3.

Step-by-step explanation:

Given information: ABCD is a parallelogram.

Prove: ∠1 is supplementary to ∠3.

Proof:

∠1 = ∠ADB

∠2 = ∠DBC

∠3 = exterior angle adjacent to angle D B C.

Statement                                         Reason

∠2 is supplementary to ∠3           Linear pairs

m∠2+m∠3=180°                             Definition of supplementary angles

m\angle 1=m\angle 2                            Alternative interior angles

m∠1+m∠3=180°                              Substitute property of equality

∠1 is supplementary to ∠3            Definition of supplementary angles

Hence proved.

3 0
4 years ago
Find the point P on the line yequals=33x that is closest to the point (60 comma 0 )(60,0). What is the least distance between P
scoray [572]

Answer:

18\sqrt{10}$ units

Step-by-step explanation:

We are given the equation of the line y=3x and a point, say Q(60,0) outside of that line.

We want to find the point on the line y=3x which is closest to Q.

Let P(x,y) be the desired point. Since it is on the line y=3x, it must satisfy the line.

If x=a, y=3a, so the point P has the coordinates (a,3a).

Distance between point Q and P

=\sqrt{(60-a)^2+(0-3a)^2}\\D =\sqrt{10a^2-120a+3600}

To minimize D, we find its derivative

\dfrac{dD}{da}=\dfrac{10a-60}{\sqrt{10a^2-120a+3600} }\\$Setting \dfrac{dD}{da}=0\\10a-60=0\\10a=60\\a=6

Therefore, the y-coordinate for P is 3*6=18.

The point P=(6,18).

Next, we calculate the distance between P(6,18) and (60,0).

D =\sqrt{10(6)^2-120(6)+3600}\\=\sqrt{3240}\\=18\sqrt{10}$ units

8 0
4 years ago
The equation of a line is y-4=3(x+2) , which of the following is a point on the line? A (2, 4) B (4, -2) C (-2, 4) D (-4, 2)
liraira [26]

Answer:

<h2>C (-2, 4)</h2>

Step-by-step explanation:

The point-slope equation of a line:

y-y_1=m(x-x_1)

m - slope

(x₁, y₁) - point

We have the equation

y-4=3(x+2)\\\\y-4=3(x-(-2))

Therefore

m = 3

(x₁, y₁) = (-2, 4)

5 0
3 years ago
Lee joins a club. The registration fee is $100 and it also has a $30 a month fee. Write a linear equation to represent this situ
Ksju [112]

Answer:

Y = 30x + 100

Step-by-step explanation:

Hope this helps. Pls give brainliest.

6 0
3 years ago
Other questions:
  • The price of gas in Bakersville is $2.10 per gallon and is increasing $0.20
    5·1 answer
  • What is 34 tens + 20 tens
    13·1 answer
  • PLZ HELP ASAP PLZ I BEG U!!!!!!!
    11·2 answers
  • Which coordinate (g, z) lies in the solution set for the following system of inequalities?
    11·1 answer
  • What do the following two equations represent?<br> - 4x + 3y = 5<br> - 4x + 3y = -1
    5·2 answers
  • Find the value of x and y of the equilateral triangle. I need it ASAP
    10·1 answer
  • What is the slope of the line on this graph between 10 and 20 seconds?
    15·1 answer
  • Please help Use the expression 8a + 16c.
    15·2 answers
  • The equation 3x-6y-2=0 in slope-intercept form is?
    6·2 answers
  • I NEED HELP WITH MY MATH HOME WORK
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!