1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
3 years ago
8

Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value

of θ when these two points coincide. (0 ≤ θ < 2π)
Show your work, thanks!​
Mathematics
1 answer:
vodomira [7]3 years ago
5 0

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

You might be interested in
-4 + 4 <br> Same signs? <br> Different sign?<br> Add/Subtract?
marin [14]

Answer:

Step-by-step explanation:

-4 is negative 4 witch is less then 4. -4 +4 =0

4 0
3 years ago
Read 2 more answers
Consider the given function and the given interval. f\(x\) = 2 sin\(x\) - sin\(2 x\) text(, ) [0 text(, ) pi] (a) Find the avera
Finger [1]

a. The average value of f on the given interval is

\displaystyle f_{\rm ave}=\frac1{\pi-0}\int_0^\pi(2\sin x-\sin2x)\,\mathrm dx=\boxed{\frac4\pi}

b. Solve for c:

\dfrac4\pi=2\sin c-\sin2c\implies\boxed{c\approx1.238\text{ or }c\approx2.808}

4 0
3 years ago
Pls help am failing <br> Hehehehgshdhdjsjbsvdv
ludmilkaskok [199]

Answer:

should be B

Step-by-step explanation:

7 0
3 years ago
A hat salesman earns a commission of 30% of all hat sales made. Yesterday he sold 3 hats for $90 each and 4 hats for $50 each. H
zalisa [80]
(30/100)(90*3+50*4)

(30/100)(270+200)

(30/100)(470)

$141.00


6 0
3 years ago
Read 2 more answers
Sales rise from £400 a week to £504 a week. Calculate a percentage increase
soldier1979 [14.2K]

Step-by-step explanation:

previous =£400

present=£504

percentage=(£504-£400)/£504*100

=104/£504*100

=20.63%

3 0
3 years ago
Other questions:
  • What is the simplified expression for Negative 3 (2 x minus y) + 2 y + 2 (x + y)?
    6·1 answer
  • The weight of water is 62 1/2 lb per cubic foot water that weighs 300 lb will fill how many cubic feet
    12·1 answer
  • Help I am confused i don’t remember how to answer this.
    15·2 answers
  • Simplify. 6x-^2 <br><br> A) 6/x^2 <br><br> B) x^2/6 <br><br> C) 1/6x^2 <br><br> D) 1/36x^2
    8·2 answers
  • Write a numerical expression for each phrase. Then simplify and
    7·2 answers
  • A rectangle is 36 inches x 48 inches.<br> What is its perimeter?<br> What is its area?
    8·2 answers
  • Estimate to find the quotient. 342/8=
    9·1 answer
  • there are 880 student in a school . if 75% of students passed the final exam find the number of passed and failed student​
    5·1 answer
  • 4. (a)(i)Show that log4x=2log16x. (ii)Show that log x=3logb³ x. (iii) Show that log₂x=(1+log₂3)logix.​
    11·1 answer
  • Find the slope of the line that passes through each pair of points a. (-4, 5), (1, 1)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!