1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
3 years ago
8

Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value

of θ when these two points coincide. (0 ≤ θ < 2π)
Show your work, thanks!​
Mathematics
1 answer:
vodomira [7]3 years ago
5 0

Answer:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1, \frac{\sqrt{3}}{2}  - 1

Step-by-step explanation:

we are given two <u>coincident</u><u> points</u>

\displaystyle  P( \sin(θ)+2,  \tan(θ)-2)   \: \text{and } \\  \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

since they are coincident points

\rm \displaystyle  P( \sin(θ)+2,  \tan(θ)-2)    = \displaystyle Q(4 \sin ^{2} (θ)+4 \sin(θ )\cos(θ)+2a \cos(θ), 3 \sin(θ)-2 \cos(θ)+a)

By order pair we obtain:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2a \cos(θ) =  \sin( \theta)   + 2 \\   \\  \displaystyle 3 \sin( \theta)  - 2  \cos( \theta)  + a =  \tan( \theta)  - 2\end{cases}

now we end up with a simultaneous equation as we have two variables

to figure out the simultaneous equation we can consider using <u>substitution</u><u> method</u>

to do so, make a the subject of the equation.therefore from the second equation we acquire:

\begin{cases}  \rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sinθ \cos(θ)+2a \cos(θ )=  \sin( \theta)   + 2 \\   \\  \boxed{\displaystyle  a =  \tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta) } \end{cases}

now substitute:

\rm\displaystyle \displaystyle 4 \sin ^{2} (θ)+4 \sin(θ) \cos(θ)+2 \cos(θ) \{\tan( \theta)  - 2 - 3 \sin( \theta)   +  2  \cos( \theta)   \}=  \sin( \theta)   + 2

distribute:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ)+4 \sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  - 6 \sin( \theta) \cos( \theta)    + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

collect like terms:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)     + 4  \cos ^{2} ( \theta)   =  \sin( \theta)   + 2

rearrange:

\rm\displaystyle \displaystyle 4 \sin ^{2}( θ) + 4 \cos ^{2} ( \theta)  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta) + =  \sin( \theta)   + 2

by <em>Pythagorean</em><em> theorem</em> we obtain:

\rm\displaystyle \displaystyle 4  - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)   + 2

cancel 4 from both sides:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+2 \sin(θ ) - 4\cos( \theta)  =  \sin( \theta)    - 2

move right hand side expression to left hand side and change its sign:

\rm\displaystyle \displaystyle   - 2\sin(θ) \cos(θ)+\sin(θ ) - 4\cos( \theta) + 2  =  0

factor out sin:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1) - 4\cos( \theta) + 2  =  0

factor out 2:

\rm\displaystyle \displaystyle  \sin (θ) (- 2 \cos(θ)+1)  + 2(- 2\cos( \theta) + 1 ) =  0

group:

\rm\displaystyle \displaystyle ( \sin (θ)   + 2)(- 2 \cos(θ)+1)  =  0

factor out -1:

\rm\displaystyle \displaystyle -  ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

divide both sides by -1:

\rm\displaystyle \displaystyle   ( \sin (θ)   + 2)(2 \cos(θ) - 1)  =  0

by <em>Zero</em><em> product</em><em> </em><em>property</em> we acquire:

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)   + 2 = 0 \\ \displaystyle2 \cos(θ) - 1=  0 \end{cases}

cancel 2 from the first equation and add 1 to the second equation since -1≤sinθ≤1 the first equation is false for any value of theta

\begin{cases}\rm\displaystyle \displaystyle   \sin (θ)     \neq  - 2 \\ \displaystyle2 \cos(θ) =  1\end{cases}

divide both sides by 2:

\rm\displaystyle \displaystyle \displaystyle \cos(θ) =   \frac{1}{2}

by unit circle we get:

\rm\displaystyle \displaystyle \displaystyle θ=    {60}^{ \circ} , {300}^{ \circ}

so when θ is 60° a is:

\rm \displaystyle a =  \tan(  {60}^{ \circ} )  - 2 - 3 \sin(  {60}^{ \circ} )   +  2  \cos(  {60}^{ \circ} )

recall unit circle:

\rm \displaystyle a =   \sqrt{3}  - 2 -  \frac{ 3\sqrt{3} }{2}   +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a =    - \frac{   \sqrt{3} }{2}    - 1

when θ is 300°

\rm \displaystyle a =  \tan(  {300}^{ \circ} )  - 2 - 3 \sin(  {300}^{ \circ} )   +  2  \cos(  {300}^{ \circ} )

remember unit circle:

\rm \displaystyle a =  -  \sqrt{3}   - 2  +   \frac{3\sqrt{ 3} }{2}  +  2   \cdot  \frac{1}{2}

simplify which yields:

\rm \displaystyle a = \frac{ \sqrt{3} }{2} - 1

and we are done!

disclaimer: also refer the attachment I did it first before answering the question

You might be interested in
10 Points If U Please Answer This
Elina [12.6K]

I think the answer is one of them. BOOM, MIND BLOWN!

3 0
4 years ago
The graph of a linear equation contains the points (3,11) and (-2,11). Which point also lies on the graph?(YOU MUST SHOW WORK)
dexar [7]
Y= ax+b

when x=3, y=11   and when x= -2, y=11
          3a+b=11
          -2a+b=11    | * -1
3a+b=11
2a-b=-11
------------
  5a=0, a=0:5, a=0
⇒ b=11
y=11 for every x
So ( 1,11)  or (2,11) are also points on the graph
3 0
3 years ago
​Which situation matches the inequality below?
mars1129 [50]

Answer:

C is the correct answer

8 0
3 years ago
Pleaseeeee help im horrible at math
Murljashka [212]

Answer:

The Answer is gonna be D. 2

This is the right Answer:3

I hope you are having a great day ❤️❤️❤️

3 0
3 years ago
Read 2 more answers
What is the first step to take when solving this linear system of equations by the addition-subtraction method? 2x + 4y = 3 x +
Free_Kalibri [48]

The right answer is Option D.

Step-by-step explanation:

Given equations are;

2x+4y=3    Eqn 1

x+3y=13    Eqn 2

When we use subtraction-addition method, we make one of the variables same with opposite signs so that only one variable remains after addition or subtraction.

In the given problem, we will multiply Eqn 2 with "-2" so that the x variables become equal and then we can add both the equations and solve for y.

Therefore,

The first step will be to multiply the second equation by -2 to solve the linear system of equations.

The right answer is Option D.

Keywords: linear equations, subtraction

Learn more about linear equations at:

  • brainly.com/question/8902155
  • brainly.com/question/8955867

#LearnwithBrainly

5 0
3 years ago
Other questions:
  • 5. Write the number in expanded form<br> using exponents.<br> 2,036,017
    12·1 answer
  • Use multiplication to find three ratios equivalent to 5 : 11.
    6·1 answer
  • Can someone help me with this question
    9·1 answer
  • The fourth term of a sequence is 108. Each term after the first is 3 times the previous term. Write an explicit expression that
    5·1 answer
  • 34699 rounded to the nearest ten thousand
    8·2 answers
  • Using a deck of 52 playing cards, what are the odds against drawing a 6,7,8, or 9?
    6·1 answer
  • 70. Dominic buys a new suit that is on sale for 20% off
    15·1 answer
  • What is 623.98 ÷ 1/100
    14·2 answers
  • Translate the<br> following phase<br> into an inequality<br> -3 times r is at least 57
    11·1 answer
  • The frequency table will be used to make a histogram. Use the drop-down menus to answer each question regarding the histogram.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!