1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna007 [38]
2 years ago
13

Help!!!!

Chemistry
2 answers:
V125BC [204]2 years ago
8 0

Answer:D and C sorry if im wrong

Explanation:

babunello [35]2 years ago
3 0

Answer: A and C

Explanation: because wavelength is the distance over which the wave's shape repeats.

You might be interested in
If 2.9g of water is heated from 23.9C to 98.9C, how much heat (in calories) was added to the water?
tensa zangetsu [6.8K]

Answer:

Explanation:

we know that

ΔH=m C ΔT

where ΔH is the change in enthalpy (j)

m is the mass of the given substance which is water in this case

ΔT IS the change in temperature and c is the specific heat constant  

we know that given mass=2.9 g

ΔT=T2-T1 =98.9 °C-23.9°C=75°C

specific heat constant for water is 4.18 j/g°C

therefore ΔH=2.9 g*4.18 j/g°C*75°C

ΔH=909.15 j

7 0
3 years ago
Determine the [OH−] of a solution that is 0.115 M in CO32−. For carbonic acid (H2CO3), Ka1=4.3×10−7 and Ka2=5.6×10−11.
lianna [129]

Answer:

[OH⁻] = 4.3 x 10⁻¹¹M in OH⁻ ions.

Explanation:

Assuming the source of the carbonate ion is from a Group IA carbonate salt (e.g.; Na₂CO₃), then 0.115M Na₂CO₃(aq) => 2(0.115)M Na⁺(aq) + 0.115M CO₃²⁻(aq). The 0.115M CO₃²⁻ then reacts with water to give 0.115M carbonic acid; H₂CO₃(aq) in equilibrium with H⁺(aq) and HCO₃⁻(aq) as the 1st ionization step.

Analysis:

            H₂CO₃(aq)     ⇄     H⁺(aq)    +    HCO₃⁻(aq); Ka(1) = 4.3 x 10⁻⁷

C(i)          0.115M                      0                  0

ΔC              -x                        +x                  +x

C(eq)    0.115M - x                   x                    x

            ≅ 0.115M

Ka(1) = [H⁺(aq)][HCO₃⁻(aq)]/[H₂CO₃(aq)] = [(x)(x)/(0.115)]M = [x²/0.115]M

= 4.3 x 10⁻⁷  => x = [H⁺(aq)]₁ = SqrRt(4.3 x 10⁻⁷ · 0.115)M = 2.32 x 10⁻⁴M in H⁺ ions.

In general, it is assumed that all of the hydronium ion comes from the 1st ionization step as adding 10⁻¹¹ to 10⁻⁷ would be an insignificant change in H⁺ ion concentration. Therefore, using 2.32 x 10⁻⁴M in H⁺ ion  concentration, the hydroxide ion concentration is then calculated from

[H⁺][OH⁻] = Kw => [OH⁻] = (1 x 10⁻¹⁴/2.32 x 10⁻⁴)M = 4.3 x 10⁻¹¹M in OH⁻ ions.

________________________________________________________

NOTE: The 2.32 x 10⁻⁴M  value for [H⁺] is reasonable for carbonic acid solution with pH ≅ 3.5 - 4.0.

4 0
3 years ago
1. Which has the greatest heat capacity?
mash [69]

Answer:

as the greatest heat capacity? a. 1,000 g of water b. 1,000 g of steel c. 1 g of water d. 1 g ... +1. kvargli6h and 1 other learned from this answer. Answer: a. 1,000 g of water ... Heat capacity of steel = 0.49 J/gram^0C. Hence 1,000 g of water will have greatest heat capacity.

Explanation:

4 0
2 years ago
A3. Answer each of the following: A student dissolved 1.3g of Ba(OH)2 (molar mass = 171.34 g/mol) in 250 mL of water and reacted
Sunny_sXe [5.5K]

Answer:

(i) Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + 2 H2O

(ii) 121.392 mL of HNO3 0.125M are required to react completely with the Ba(OH)2 solution.

(iii) The molarity of the Ba(OH)2 solution is 0.0303 M

(iv) Bromothymol Blue (pH range 6.0 - 7.6)

(v) pH of the soultion would be 2.446

Explanation:

(i) First of all, to solve this problem we should write the balanced chemical equation to know the stoichiometry of the reaction:

Ba(OH)2 + HNO3 → Ba(NO3)2 + H2O

The previous reaction simply describes the reactants and products involved in the chemical process. As you can see, the mass balance is not balanced because the quantity of atoms in the reactants side of the equation is not equal to the ones in the products side. So we try to add coefficients to the reaction in order to balance the amount of atoms on both sides of the reaction. To to this, we take a look at the reaction: We see that the main product formed Ba(NO3)2 has 2 atoms of N, so we add a number 2 besides the HNO3 to equal the quantity of Nitrogen atoms:

Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + H2O

Now, we can see that from the reactants side of the equation there are 8 atoms of Oxygen and in the products side we only have 7. Hence, we add the number 2 besides the molecule of water:

Ba(OH)2 + 2 HNO3 → Ba(NO3)2 + 2 H2O

If we check the situation now, we can observe that all the atoms are balanced on both sides of the reaction, so We did it!

(ii) From the balanced equation we now know that 1 mole of Ba(OH)2 reacts with 2 moles of HNO3 to form the stated products. Let's see, therefore, how many moles of Ba(OH)2 are in solution:

According to the molar mass of Ba(OH)2: 1 mole = 171.34 g

So, the student add 1.3 g of the compound to water. This means that he added 7.587x10-3 moles of Ba(OH)2. This amount of Ba(OH)2 will react with 0.01517 moles of HNO3 taking into account the stoichiometry of the balanced equation described above (1 mol of Ba(OH)2 reacts with 2 moles of HNO3).

Now that we know the amount of moles of acid required to react with the hydroxide, we need to translate this moles into volume of acid solution:

We have a 0.125 M HNO3 solution. This means that there are 0.125 moles of HNO3 in 1000 ml of solution.

0.125 moles HNO3 ------ 1000 ml Solution

0.01517 moles --------- x = 121.392 ml HNO3 Solution

This means that we need 121.392 ml of a 0.125 M HNO3 solution to react completely with the Ba(OH)2 added by the student.

(iii) Now we are asked to calculate the molarity of the Ba(OH)2 solution. From the calculations performed before in point (ii) we know that the hydroxide solution consisted of 7.587x10-3 moles of Ba(OH)2 and that this quantity of moles were in 250 mL of water. So:

250 ml Solution ----- 7.587 x10-3 moles Ba(OH)2

1000 ml Solution ----- x = 0.0303 M

(iv) Since Ba(OH)2 and HNO3 are both strong base and acid respectively, they react with each other completely to form the salt Ba(NO3)2 and water. Therefore, the pH of the solution when the reactions ends will be neutral or nearly neutral (pH = 7) and because of this we need an indicator that would change its color around this pH to be able to visualize the end point of the titration. The Bromothymol blue serves this perfectly since its change in color ranges between pH 6.0 and 7.6.

(v) If we now calculate how many moles of HNO3 are present in 150 mL of a 0.125 M solution we obtain:

1000 mL solution ---- 0.125 moles HNO3

150 mL solution ------ x = 0.01875 moles.

From this, we know that if we add 150 mL of the acid solution we would have 0.01875 moles of HNO3. However, from the previous points, we know that 0.01517 moles of the compound will be consumed by the reaction with Ba(OH)2 leaving in solution only 3.58 x10-3 moles of HNO3 (0.01875 moles - 0.01517 moles).

This amount of HNO3 will dissociate according to the following equation:

HNO3 → H+ + NO3-

The amount of protons present in solution will determine the pH. Because, as we said before, Nitric acid is a strong acid, it will dissociate completely intro protons and nitrate. As a result of this, we would have 3.58 x10-3 moles of H+ in the solution (1 mole of HNO3 produces 1 mole of H+) and considering the contribution of protons in the solution given by the dissociation of the water negligible, then:

pH = - log [H+]

pH = - log [3.58 x10-3] = 2.446

3 0
3 years ago
Annoying user "Living under a bridge"<br><br><br> its for a crossword ​
natulia [17]
I think the word might be a “troll”
3 0
3 years ago
Other questions:
  • What are more than 5 abiotic things in the desert?
    12·2 answers
  • How can you make hard water into soft water ?
    14·2 answers
  • PLEASE HELP! 15 POINTS!!!!!
    14·1 answer
  • A chemistry student is given 600. mL of a clear aqueous solution at 27.° C. He is told an unknown amount of a certain compound X
    14·1 answer
  • How many grams of Na2SO4 should be weighed out to prepare 0.5L of a 0.100M solution?​
    8·1 answer
  • If a sample of matter cannot be separated by physical means, what can be said with certainty about that sample?
    8·1 answer
  • Which of the gas laws takes into account the forces of attraction between molecules based on the characteristics of the gas? *
    11·1 answer
  • What do you mean by environment conservation?​
    15·1 answer
  • What is the name of the family with an oxidation number of +2?
    11·2 answers
  • Which statements accuratetly decribes trends found in the periodic table check all that apply
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!