Answer:
So, you're dealing with a sample of cobalt-60. You know that cobalt-60 has a nuclear half-life of
5.30
years, and are interested in finding how many grams of the sample would remain after
1.00
year and
10.0
years, respectively.
A radioactive isotope's half-life tells you how much time is needed for an initial sample to be halved.
If you start with an initial sample
A
0
, then you can say that you will be left with
A
0
2
→
after one half-life passes;
A
0
2
⋅
1
2
=
A
0
4
→
after two half-lives pass;
A
0
4
⋅
1
2
=
A
0
8
→
after three half-lives pass;
A
0
8
⋅
1
2
=
A
0
16
→
after four half-lives pass;
⋮
Explanation:
now i know the answer
Explanation:
both reduction and oxidation are occurring simultaneously, this is known as a redox reaction. An oxidizing agent is substance which oxidizes something else. In the above example, the iron(III) oxide is the oxidizing agent. A reducing agent reduces something else
The crushed tablets would stop bubbling/fuzzing first because it has a smaller surface area which means that it would dissolve before the uncrushed tablets which has a larger surface area.
helium
has the most neutrons in the nucleus
<span>Answer is: Van't Hoff factor
(i) for this solution is 1.051 .
Change in boiling point from pure solvent to solution: ΔT
=i · Kb · b.
Kb - </span><span>molal boiling point elevation constant</span><span> is 0.512°C/m.
b - molality, moles of solute per kilogram of solvent.
b = 1.26 m.
ΔT = 101.63°C - 100</span>°C = 1.63°C.
i = 1.63°C ÷ (0.512°C/m · 1.26 m).
i = 1.051.