1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
3 years ago
5

The voltage across a membrane forming a cell wall is 72.7 mV and the membrane is 9.22 nm thick. What is the magnitude of the ele

ctric field strength? (The value is surprisingly large, but correct.) You may assume a uniform E-field.
Physics
1 answer:
Blizzard [7]3 years ago
8 0

Answer:

The  magnitude of the  electric field intensity is  E =  7.89  *10^{6} \ V/m

Explanation:

From the question we are told that

    The  voltage is  \epsilon     =  72.7 \ mV  =  72.7 *10^{-3}  V

    The  thickness of the membrane is  t =  9.22 \ nm  =  9.22 *10^{-9} \ m

     

Generally the electric field intensity is mathematically represented as

                E =  \frac{\epsilon }{t}

 substituting values

                E =  \frac{72.7 *10^{-3} }{9.22 *10^{-9}}

                E =  7.89  *10^{6} \ V/m

You might be interested in
An ideal monatomic gas at temperature T is held in a container. If the gas is compressed isothermally, that is at constant tempe
OlgaM077 [116]

Answer:

a) 0 J

b) W = nRTln(Vf/Vi)

c) ΔQ = nRTln(Vf/Vi)

d) ΔQ = W

Explanation:

a) To find the change in the internal energy you use the 1st law of thermodynamics:

\Delta U=\Delta Q-W

Q: heat transfer

W: work done by the gas

The gas is compressed isothermally, then, there is no change in the internal energy and you have

ΔU = 0 J

b) The work is done by the gas, not over the gas.

The work is given by the following formula:

\\W=nRTln(\frac{V_f}{V_i})

n: moles

R: ideal gas constant

T: constant temperature

Vf: final volume

Vi: initial volume

Vf < Vi, then W < 0 and the work is done on the gas

c) The gas has been compressed. Thus, its temperature increases and heat has been transferred to the gas.

The amount of heat is equal to the work done W

d)

\Delta U = \Delta Q-W\\\\0=\Delta Q-W\\\\\Delta Q=W=nRTln(\frac{V_f}{V_i})

5 0
3 years ago
Why must mine tailings be stored and disposed of carefully?
gavmur [86]
After thorough researching, the mine tailings must be stored and disposed of carefully because they have lots of chemical and various toxic materials. They can also leach to the aquifers. The correct answer to the following given statement above is they have chemicals which are dangerous.
7 0
3 years ago
What are two benefits of scientists using a diagram to model the water cycle?
Sidana [21]

Explanation:

it can be used to show how the parts of the cycle relate to one another

8 0
2 years ago
A centrifuge rotor rotating at 10,000 rpm is shut off and is eventually brought to rest by a frictional force of 1.20m n. if the
Pani-rosa [81]
<span>Answer: The moments of inertia are listed on p. 223, and a uniform cylinder through its center is: I = 1/2mr2 so I = 1/2(4.80 kg)(.0710 m)2 = 0.0120984 kgm2 Since there is a frictional torque of 1.20 Nm, we can use the angular equivalent of F = ma to find the angular deceleration: t = Ia -1.20 Nm = (0.0120984 kgm2)a a = -99.19 rad/s/s Now we have a kinematics question to solve: wo = (10,000 Revolutions/Minute)(2p radians/revolution)(1 minute/60 sec) = 1047.2 rad/s w = 0 a = -99.19 rad/s/s Let's find the time first: w = wo + at : wo = 1047.2 rad/s; w = 0 rad/s; a = -99.19 rad/s/s t = 10.558 s = 10.6 s And the displacement (Angular) Now the formula I want to use is only in the formula packet in its linear form, but it works just as well in angular form s = (u+v)t/2 Which is q = (wo+w)t/2 : wo = 1047.2 rad/s; w = 0 rad/s; t = 10.558 s q = (125.7 rad/s+418.9 rad/s)(3.5 s)/2 = 952.9 radians But the problem wanted revolutions, so let's change the units: q = (5528.075087 radians)(revolution/2p radians) = 880. revolutions</span>
6 0
3 years ago
Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe
AlexFokin [52]

Answer:

0.56 atm

Explanation:

First of all, we need to find the number of moles of the gas.

We know that

m = 1.00 g is the mass of the gas

Mm=44.0 g/mol is the molar mass of the carbon dioxide

So, the number of moles of the gas is

n=\frac{m}{M_m}=\frac{1.00 g}{44.0 g/mol}=0.023 mol

Now we can find the pressure of the gas by using the ideal gas equation:

pV=nRT

where

p is the pressure

V=1.00 L = 0.001 m^3 is the volume

n = 0.023 mol is the number of moles

R=8.314 J/mol K is the gas constant

T=25.0^{\circ}+273=298 K is the temperature of the gas

Solving the equation for p, we find

p=\frac{nRT}{V}=\frac{(0.023 mol)(8.314 J/mol K)(298 K)}{0.001 m^3}=5.7 \cdot 10^4 Pa

And since we have

1 atm = 1.01\cdot 10^5 Pa

the pressure in atmospheres is

p=\frac{5.7\cdot 10^4 Pa}{1.01\cdot 10^5 Pa/atm}=0.56 atm

5 0
3 years ago
Other questions:
  • Question 9 Unsaved
    13·1 answer
  • How many miles can you get on one tank of gas if your tank holds 18 gallons and you get 22 miles per
    7·2 answers
  • A makes an angel of 30.0 above the positive x-axis, and B makes an angel of 45.0 below the negative x-axis. A=3.00 units and B=2
    13·1 answer
  • A roller coaster is traveling at 13 m/s when it approaches a hill that is 400 m long. Heading down the hill, it accelerates at 4
    8·2 answers
  • A 3.00 × 10^−9-coulomb test charge is placed near
    6·2 answers
  • A water-balloon launcher with mass 5 kg fires a 1 kg balloon with a velocity of
    13·1 answer
  • When is a zero not significant?
    8·2 answers
  • To determine power, we need to know the
    15·2 answers
  • A cannon of mass 6.43 x 103 kg is rigidly bolted to the earth so it can recoil only by a negligible amount. The cannon fires a 7
    8·1 answer
  • The federal government spends the most on which of the following?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!