Answer:
it states that the total mass of the products are the same as the total mass of the reactants in a chemical reaction.
Explanation:
The negative log function that determines the acidity or alkalinity by hydronium ion concentration is called pH.
The substance having high
will have:
Option B. A low
and a high 
This characteristic can be explained as:
- The concentrations of
and
are inversely dependent on each other so when the concentration of raises then the concentration of
drops and vice versa.
- The pH of a solution or substance is calculated with the help of:
![\rm pH = \rm - log \rm [H^{+}]](https://tex.z-dn.net/?f=%5Crm%20%20pH%20%20%3D%20%5Crm%20-%20log%20%20%5Crm%20%5BH%5E%7B%2B%7D%5D)
From the formula, it can be deduced that when the concentration of
is high then the pH has a low value and it means that the solution is acidic.
- pH can also be written as:

From this formula we can that when the value of pH is less then the value of pOH will be increased and vice versa.
Therefore, when pOH is in high concentration then
is low.
To learn more about pH and pOH follow the link:
brainly.com/question/13557815
Answer:
All of the above processes have a ΔS < 0.
Explanation:
ΔS represents change in entropy of a system. Entropy refers to the degree of disorderliness of a system.
The question requests us to identify the process that has a negative change of entropy.
carbon dioxide(g) → carbon dioxide(s)
There is a change in state from gas to solid. Solid particles are more ordered than gas particles so this is a negative change in entropy.
water freezes
There is a change in state from liquid to solid. Solid particles are more ordered than liquid particles so this is a negative change in entropy.
propanol (g, at 555 K) → propanol (g, at 400 K)
Temperature is directly proportional to entropy, this means higher temperature leads t higher entropy.
This reaction highlights a drop in temperature which means a negative change in entropy.
methyl alcohol condenses
Condensation is the change in state from gas to liquid. Liquid particles are more ordered than gas particles so this is a negative change in entropy.
Heat required in a system can be calculated by multiplying the given mass to the
specific heat capacity of the substance and the temperature difference. It is
expressed as follows:<span>
Heat = mC (T2-T1)
Heat = 10.0 g (4.18 J/g-C ) ( 6.0 C )
<span>Heat = 250.8 J</span></span>
Decreasing the temperature in the reaction vessel keep this reaction from shifting to form more of the product.
As we know that rate of reaction is directly proportional to the concentration of the reactant.
If we increase the concentration of H2 then the rate of reaction increases. So, we keep it constant. Therefore this option is wrong.
By removing the H₂O from the reaction vessel as it almost make no change in the reaction. This can be pursuited the reaction in which product again converted into product.
By increasing the temperature we increases the rate of reaction and equilibrium shift in the forward direction.
Thus, we concluded that by decreasing the temperature in the reaction vessel keep this reaction from shifting to form more of the product.
learn more about rate of reaction:
brainly.com/question/8592296
#SPJ13