Combustion reaction
Key: O2
O2 is normally in a chemical formula when you are used to burn anything, so basically, anything with O2 involves burning.
<span>Mass Number = (Atomic Number) + (Number of Neutrons) so you solve for the Number of Neutrons and you get:
Number of Neutrons = (Mass number) - (Atomic Number)
Mass Number equals protons plus neutrons, round atomic weight to nearest whole number
Atomic Number equals number of Protons</span>
Taking into account the change of units, 21.8 in³ is equal to 0.357238 L.
<h3>Definition of rule of three</h3>
The rule of three is a way of solving problems of proportionality between three known values and an unknown value, establishing a relationship of proportionality between all of them.
If the relationship between the magnitudes is direct, that is, when one magnitude increases, so does the other (or when one magnitude decreases, so does the other) , the direct rule of three must be applied using the following formula, where a, b and c known data and x the variable to be calculated:
a ⇒ b
c ⇒ x
So: x= (c×b)÷ a
The direct rule of three is the rule applied in this case where there is a change of units.
<h3>in³ to liters</h3>
To perform in this case the conversion of units, you must first know that 1 in³ = 0.0163871 L. So, the rule of three can be used as follow: if 1 in³ is 0.0163871 L, 21.8 in³ equals how many L?
1 in³ ⇒ 0.0163871 L
21.8 in³ ⇒ x
So: x= (21.8 in³ ×0.0163871 L)÷ 1 in³
Solving:
<u><em>x= 0.357238 L</em></u>
In summary, 21.8 in³ is equal to 0.357238 L.
Learn more with this example:
brainly.com/question/12482948
#SPJ1
13 atoms are in the chemical formula AI(PO4)3
hope that helps :-)
Answer: The heat energy produced is 53831.25KJ
Explanation:
METHANE is the main component of natural gas. It can undergo combustion reaction in air with a bright blue flame to produce carbondioxide and water. The heat of reaction (enthalpy) is negative because heat is absorbed during the chemical reaction. To calculate the heat energy produced by the combustion of one kilogram (1 kg) of methane the following steps are taken:
Molecular mass of methane =16 gm/mol.
So moles of 1 kg methane =
Given mass of methane ÷ molecular weight of methane
But the given mass = 1kg = 1000g
Therefore,
moles of 1000g methane = 1000÷16
= 62.5 moles
Hence, energy evolved = (moles of methane) × (heat of combustion)
Therefore,
heat energy produced= 62.5 × (-861.3kj)
= -53831.25kj