Explanation:
To solve this question, we will use the Clayperon Equation:
P.V = n.R.T
where:
P = 101.28 kPa
1 atm = 101,325 Pa
x atm = 101,280 Pa
x = 1 atm
V = 37.058 L
n = we don't know
R = 0.082 atm.L/K.mol
T = -139.88 ºC = -139.88+273.15 = 133.27 K
1*37.058 = n*0.082*133.27
n = 0.29 moles
Answer: 0.29 moles
The correct answer is A, Water is not used up during this process. This is because when cellular respiration occurs oxygen and glucose combine. When this takes place water is left behind when carbon is separated from glucose. Because water is being left behind it is not being used up in this process.
Answer:
C. A series circuit has only one loop and a parallel circuit has two or more loops for the current to flow through
Explanation:
A circuit that are made of one loop is called series circuit. On the other hand, the parallel circuit has at least two loops. The circuit type has nothing to do with open or closed circuit.
If any part of the series circuit got cut, the current will stop flowing since there is only one loop. A parallel circuit has more loop so the circuit might still work even if a part of the circuit got cut.
Answer:
By atomic number?
Explanation:
fingers crossed its right :/
Answer:
Explanation:
<u>1) Data:</u>
a) V = 93.90 ml
b) T = 28°C
c) P₁ = 744 mmHg
d) P₂ = 28.25 mmHg
d) n = ?
<u>2) Conversion of units</u>
a) V = 93.90 ml × 1.000 liter / 1,000 ml = 0.09390 liter
b) T = 28°C = 28 + 273.15 K = 301.15 K
c) P₁ = 744 mmHg × 1 atm / 760 mmHg = 0.9789 atm
d) P₂ = 28.5 mmHg × 1 atm / 760 mmHg = 0.0375 atm
<u>3) Chemical principles and formulae</u>
a) The total pressure of a mixture of gases is equal to the sum of the partial pressures of each gas. Hence, the partical pressure of the hydrogen gas collected is equal to the total pressure less the vapor pressure of water.
b) Ideal gas equation: pV = nRT
<u>4) Solution:</u>
a) Partial pressure of hydrogen gas: 0.9789 atm - 0.0375 atm = 0.9414 atm
b) Moles of hygrogen gas:
pV = nRT ⇒ n = pV / (RT) =
n = (0.9414 atm × 0.09390 liter) / (0.0821 atm-liter /K-mol × 301.15K) =
n = 0.00358 mol (which is rounded to 3 significant figures) ← answer