Explanation:
though the statements were not given let just give you a brief review of normative system.
A normative statement explains what should be base of the subject according to the belief through valued judgement that describes the fairness of the subject on public policy. Therefore, the unemployment rate should be lowered is a valued judgement based on the belief that it will bring economic welfare.
Normative systems, i.e., sets of norms, have two main. tions: a) to evaluate human actions, and b) to guide peop. The guidance and the evaluation based on a normativ. be good or bad.In social psychology three different normative behaviours have been identified: obedience, conformity and compliance.In the context of a normative system like law (or religion or morality), every statement of what one ought to do (or ought not to do) requires justification from a more general or basic statement. Such statements lead upward through the normative hierarchy until one reaches a foundational normative premise.
please rate brainliest if helps and follow
Answer:
S(metal) = 0.66J/g°C
Explanation:
We can find specific heat of a material, S, using the equation:
q = m*S*ΔT
<em>Where q is change in heat, m is the mass of the substance, S specific heat and ΔT change in temperature.</em>
The heat given by the metal is equal to the heat that water absorbs, that is:
m(Metal)*S(metal)*ΔT(Metal) = m(Water)*S(water)*ΔT(water)
<em>Where:</em>
m(Metal) = 76.0g
S(metal) = ?
ΔT(Metal) = 96.0°C-31.0°C = 65.0°C
m(Water) = 120.0g
S(water) = 4.184J/g°C
ΔT(water) = 31.0°C-24.5°C = 6.5°C
Replacing:
76.0g*S(metal)*65.0°C = 120.0g*4.184J/g°C*6.5°C
S(metal) = 0.66J/g°C
<em />
The law of conservation applies because the energy is not been created or destroyed. The energy that the metal gives is absorbed by the water.
Answer:
Total protein range. The normal range for total protein is between 6 and 8.3 grams per deciliter (g/dL). This range may vary slightly among laboratories.
Explanation:
The equation is 2 NH3 (g) ⇀↽ N2 (g) + 3 H2 (g)
Difference in the number of moles delta n = ((3 + 1) - 2) = 4 - 2 = 2
We have an equation Kp= Kc (R x T) ^ (delta n); R is constant and T = 300 K
Kp / Kc = (R x T) ^2 Based on the temperature value (300 K), we can conclude that Kp is Larger.
Answer:
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
Structure Number Two would likely be the most stable structure.
<h3>2)</h3>
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
The N atom is the one that is "likely" to be attracted to an anion. See explanation.
Explanation:
When calculating the formal charge for an atom, the assumption is that electrons in a chemical bond are shared equally between the two bonding atoms. The formula for the formal charge of an atom can be written as:
.
For example, for the N atom in structure one of the first question,
- N is in IUPAC group 15. There are 15 - 10 = 5 valence electrons on N.
- This N atom is connected to only 1 chemical bond.
- There are three pairs, or 6 electrons that aren't in a chemical bond.
The formal charge of this N atom will be .
Apply this rule to the other atoms. Note that a double bond counts as two bonds while a triple bond counts as three.
<h3>1)</h3>
Structure One:
Structure Two:
Structure Three:
In general, the formal charge on all atoms in a molecule or an ion shall be as close to zero as possible. That rules out Structure number one.
Additionally, if there is a negative charge on one of the atoms, that atom shall preferably be the most electronegative one in the entire molecule. O is more electronegative than N. Structure two will likely be favored over structure three.
<h3>2)</h3>
Similarly,
- All five C atoms: 0
- All six H atoms to C: 0
- N atom: +1.
Assuming that electrons in a chemical bond are shared equally (which is likely not the case,) the nitrogen atom in this molecule will carry a positive charge. By that assumption, it would attract an anion.
Note that in reality this assumption seldom holds. In this ion, the N-H bond is highly polarized such that the partial positive charge is mostly located on the H atom bonded to the N atom. This example shows how the formal charge assumption might give misleading information. However, for the sake of this particular problem, the N atom is the one that is "likely" to be attracted to an anion.