It uses the voltages and sound freq. in the air to measure the wave lengthths
Entropy change is defined only along the path of an internally reversible process path.
<h3><u>What is Entropy Change </u>?</h3>
- Entropy is a measure of a thermodynamic system's overall level of disorder or non-uniformity. The thermal energy that a system was unable to use to perform work is known as entropy.
- Entropy Change is a phenomena that measures how disorder or randomness have changed inside a thermodynamic system.
- It has to do with how heat or enthalpy is converted during work. More unpredictability in a thermodynamic system indicates high entropy.
- Entropy is a state function, hence it is independent of the direction that the thermodynamic process takes.
- The rearranging of atoms and molecules from their initial state causes the change in entropy.
- This may result in a decrease or rise in the system's disorder or unpredictability, which will, in turn, result in a corresponding drop or increase in entropy.
To view more questions about entropy change, refer to:
brainly.com/question/4526346
#SPJ4
I think the answer is A but i'm not sure
The half-life in years of Neptunium-237 which was the first isotope is 2.1
years.
Neptunium is most stable and Neptunium-237 is undergoes alpha decay, it means Neptunium-237 is decays by the emission of alpha particles . Seven alpha particles is emitted during decay of Neptunium-237. Neptunium-237 is radioactive actinide elements and first transuranium element.
The transuranium synthesis process involves creating a transuranium element through the transmutation process . The transmutation process is the process of creating heavy elements from light elements. Hence the process is the transmutation of light elements. There are two types: artificial and natural transmutation.
to learn more about transuranium element.
brainly.com/question/1491386
#SPJ4
Answer:
c. chloroacetate ion
Explanation:
The chloroacetic acid, ClCH₂CO₂H, is a weak acid with Ka = 1.36x10⁻³. When this weak acid is in solution with its conjugate base, ClCH₂CO₂⁻ (From sodium chloroacetate) a buffer is produced. The addition of a strong acid as the HCl produce the following reaction
HCl + ClCH₂CO₂⁻ → ClCH₂CO₂H + Cl⁻.
Where the acid reacts with the chloroacetate ion to produce more chloroacetic acid
That means, the HCl reacts with the chloroacetate ion present in the buffer solution
Right answer is:
<h3>c. chloroacetate ion</h3>