Answer:
Molecules that will have dipole-dipole forces with like molecules include the water (H2O) molecule. Another example is the Hydrogen Chloride (HCl) molecule.
Explanation:
Intermolecular forces are forces of attraction or repulsion that exist between particles (ions, atoms, or molecules) that are close/in nearby proximity to each other. Usually, intermolecular forces are not as strong as intramolecular forces which create covalent or ionic bonds between the atoms that exist within molecules. Dipole-dipole interactions occur whenever the partial charges that exist within one molecule are attracted to the opposite partial charges that exist within another different molecule that is nearby and similar in composition: the positive end/charges of one molecule are attracted to the negative end/charges of another similar molecule.
An example of molecules that exhibit dipole-dipole interaction is the water (H2O) molecule. Another molecule which exhibits dipole–dipole interaction is the Hydrogen Chloride (HCl) molecule, whereby the positive end of one HCl molecule usually attracts the negative end of another HCl molecule.
Answer:
Option A = atomic masses
Explanation:
In compound molecular mass is the sum of the individual atomic masses of the atoms.
For example
Compound NaCl.
atomic weight of sodium = 23 g/mol
atomic weight of chlorine = 35.5 g/mol
Molar mass of NaCl = 23+ 35.5 = 58.5 g/mol
Every atom consist of nucleus or a positive center. The protons and neutrons are present with in the nucleus while electrons are present out side the nucleus. All these three subatomic particles construct an atom. The number of protons or number of electrons are the atomic number of an atom while the number of protons and number of neutrons are the mass number of an atom. A neutral atom have equal number of protons and electrons. In other words we can say that negative and positive charges are equal in magnitude and cancel the each other.