Answer:
B) the average distance from the Earth to the Sun
Explanation:
<span>According to the three laws of planetary motion, planetary orbits are in the shape of an "Ellipse"
In short, Your Answer would be Option B
Hope this helps!</span>
Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
Answer:
use the formula for option B ( d/t = s )
and
look at the graph representation to explain
There are lots of variables that directly and indirectly contribute to the presence of gas on a surface
if the size of a planet is relatively small it will in turn be that of a smaller area which results in the less area to be covered for gas which basically means higher presence
I can go in depth more but I don't think that would be necessary all you need to know is this ...based on the size and gas will in turn be parallel to it's conformity