The emf is induced in the wire will be 1.56 ×10 ⁻³ V. The induced emf is the product of the magnetic field,velocity and length of the wire.
<h3>What is induced emf?</h3>
Emf is the production of a potential difference in a coil as a result of changes in the magnetic flux passing through it.
When the flux coupling with a conductor or coil changes, electromotive Force, or EMF, is said to be induced.
The given data in the problem is;
B is the magnitude of the magnetic field,= 5.0 ×10⁻⁵ T
V(velocity)=125 M/SEC
L(length)=25 cm=0.25 m
The maximum emf is found as;
E=VBLsin90°
E=125 × 5.0 × 10⁻⁵ ×0.25
E=1.56 ×10 ⁻³ V
Hence, the emf is induced in the wire will be 1.56 ×10 ⁻³ V
To learn more about the induced emf, refer to the link;
brainly.com/question/16764848
#SPJ1
Option A, current (thumb) to magnetic field (fingers)
As per the First right-hand rule,
Using right hand, if we suppose that thumb points towards the electric current
fingers curl towards the magnetic field
Answer:
32 amu is the right choice because both protons and neutrons have a mass of 1 amu. Electrons have no mass so go with the last choice
Change in position of object = Displacment
Answer:
The variation and distribution of traits in a population depend on genetic and environmental factors. Genetic variation can result from mutations caused by environmental factors or errors in DNA replication, or from chromosomes swapping sections during meiosis.
Explanation:
Hope this helps!