A magnetic field is actually generated by a moving current (or moving electric charge specifically). The magnetic field generated by a moving current can be found by using the right hand rule, point your right thumb in the direction of current flow, then the wrap of your fingers will tell you what direction the magnetic field is. In the case of current traveling up a wire, the magnetic field generated will encircle the wire. Similarly electromagnets work by having a wire coil, and causing current to spin in a circle, generating a magnetic field perpendicular to the current flow (again right hand rule).
So if you were to take a permenant magnet and cut a hole in it then string a straight wire through it... my guess is nothing too interesting would happen. The two different magnetic fields might ineteract in a peculiar way, but nothing too fascinating, perhaps if you give me more context as to what you might think would happen or what made you come up with this question I could help.
Source: Bachelor's degree in Physics.
Answer:
3.75 hours
Explanation:
By
where v is the velocity (or speed in this case)
d is the distance travelled
t is the time taken
Therefore it takes 3.75 hours for the bus to travel 150 km and 40 km/hr.
Answer:
a.
b. must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c. is the time taken to stop after braking
Explanation:
Given:
- speed of leading car,
- speed of lagging car,
- distance between the cars,
- deceleration of the leading car after braking,
a.
Time taken by the car to stop:
where:
, final velocity after braking
time taken
b.
using the eq. of motion for the given condition:
where:
final velocity of the chasing car after braking = 0
acceleration of the chasing car after braking
must be the minimum magnitude of deceleration to avoid hitting the leading car before stopping
c.
time taken by the chasing car to stop:
is the time taken to stop after braking
I think the answer is c but I’m not sure