Answer:
Explanation:
Let electric potential at A ,B and C be Va , Vb and Vc respectively.
Work done = charge x potential difference
Wab = q ( Va - Vb )
Wac = q ( Va - Vc )
Given
Wac = - Wab / 3
3Wac = - Wab
Now
Wbc = q ( Vb - Vc )
= q [ ( Va-Vc ) - ( Va - Vb )]
= Wac - Wab
= Wac + 3Wac
= 4Wac
The formula that links voltage (V), resistance (R) and current intensity (I) is

Solve this formula for I to get

Plug your values for V and R and you'll get the current.
Answer:
0.655 m
13.468°C
Explanation:
v = Speed of sound at 20.0°C = 343 m/s (general value)
For one both end open we have the expression

The length of the flute is 0.655 m
Beat frequency is given by

Velocity of the wave is

The temperature is given by

The temperature of the room is 13.468°C
Answer:
7.09683 m
1.20285 s
2.4057 s
11.8 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
g = Acceleration due to gravity = 9.81 m/s² (negative up, positive down)
From equation of motion we have

The maximum height above the ground that the ball reaches is 7.09683 m

Time taken to go up is 1.20285 s it will take the same time to come down so total time taken to reach the ground after it is shot is 1.20285+1.20285 = 2.4057 s

The velocity just before it hits the ground is 11.8 m/s
Answer:
A) 1.67 x 10 ⁻⁶ m/s
B)5.59 x
%
Explanation:
A)
Given:
d = 5.0 km,
mₐ = 2.5 x
kg
u₁ = 4.0 x 10⁴ m/s
= 5.98 x 10 ²⁴ kg
Solve using kinetic conserved energy
mₐ x u₁ +
x u₂ = uₓ x (mₐ +
)
(2.5 x
) (4.0 x 10⁴ )+ (5.98 x 10 ²⁴ )(0) = uₓ x (2.5 x
+ 5.98 x 10 ²⁴ )
uₓ = ( 2.5 x
x 4.0 x 10⁴ ) / (2.5 x
+ 5.98 x 10 ²⁴ )
uₓ = 1.67 x 10 ⁻⁶ m/s
B) Assuming earth radius as a R = 1.5 x 10 ¹¹ m
t = 365 days x 24 hr / 1 day x 60 minute / 1 hr x 60s / 1 minute = 31536000 s
t = 31536000 s
D = 2 π R = 2 π( 1.5 x 10 ¹¹ )
D = 9.4247 x 10 ¹¹ m
u₂ = D / t = 9.4247 x 10 ¹¹ / 31536000
u₂ = 29885.775 m/s
% = ( 1.67 x 10 ⁻⁶ m/s ) / (29885.775 m/s) x 100
% = 5.59 x
%