1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataliya [291]
3 years ago
15

Which is correct about the charge movement when a battery is connected to copper wire?a.)Electrons leave the positive battery te

rminal and electrons enter the negative terminal. b.)Electrons leave the negative battery terminal and electrons enter the positive terminal. c.)Protons leave the positive battery terminal and positive charges enter the negative terminal. d.)Protons leave the negative battery terminal and positive charges enter the positive terminal.
Physics
1 answer:
professor190 [17]3 years ago
5 0

Answer:

b.)Electrons leave the negative battery terminal and electrons enter the positive terminal.

Explanation:

- First of all, the carriers of charge in an electrical circuit are the electrons, not the protons. In fact, electrons in a conductor (such as the copper wire) are free to move, while protons are bond inside the nuclei of the atoms, so they are not free to move. This means that only choices a) and b) could be correct.

- Finally, we know that charges with same sign repel each other, while charges with opposite sign attract each other. This means that electrons are repelled by the negative terminal of the battery and attracted by the positive terminal of the battery. Therefore, the correct choice must be

b.)Electrons leave the negative battery terminal and electrons enter the positive terminal.

You might be interested in
If you put a total of 8.05×106×106 electrons on an intially electrically neutral wire of length 1.03 m, what is the magnitude of
olga_2 [115]

Answer:

The magnitude of the electric field is 0.1108 N/C

Explanation:

Given;

number of electrons, e = 8.05 x 10⁶

length of the wire, L = 1.03 m

distance of the field from the center of the wire, r = 0.201 m

Charge of the electron;

Q = (1.602 x 10⁻¹⁹ C/e) x (8.05 x 10⁶ e)

Q = 1.2896 x 10⁻¹² C

Linear charge density;

λ = Q / L

λ = (1.2896 x 10⁻¹² C) / (1.03 m)

λ = 1.252 x 10⁻¹² C/m

The magnitude of electric field at r = 0.201 m;

E = (\frac{1}{4 \pi \epsilon_o} )\frac{ 2 \lambda}{r} \\\\E = k \frac{ 2 \lambda}{r}\\\\E = (8.89*10^9)*\frac{2*1.252*10^{-12}}{0.201}  \\\\E = 0.1108 \ N/C

Therefore, the magnitude of the electric field is 0.1108 N/C

6 0
3 years ago
Which of the following statements about the conservation of momentum is not correct? Momentum is conserved for a system of objec
Olin [163]

Answer:

wrong statement :  Momentum is not conserved for a system of objects in a head-on collision.

Explanation:

In a head on collision of two objects , two equal and opposite forces are created at the point of collision . These two forces create two impulses in opposite direction which results in equal and opposite changes in momentum in each of them . Hence net change in momentum is zero. In this way momentum is conserved in head on collision of two objects.

3 0
4 years ago
How can meteorologists use the jet stream to predict the weather ?
barxatty [35]
<span>Jet streams act as an invisible director of the atmosphere and are largely responsible for changes in the weather across the globe.
Hope this helps</span>
5 0
3 years ago
Points a and b lie in a region where the y-component of the electric field is Ey=α+β/y2. The constants in this expression have t
Drupady [299]

Answer:

V_{a} - V_{b} = 89.3

Explanation:

The electric potential is defined by

         V_{b} - V_{a} = - ∫ E .ds

In this case the electric field is in the direction and the points (ds) are also in the direction and therefore the angle is zero and the scalar product is reduced to the algebraic product.

         V_{b} - V_{a} = - ∫ E ds

We substitute

         V_{b} - V_{a} = - ∫ (α + β/ y²) dy

We integrate

          V_{b} - V_{a} = - α y + β / y

We evaluate between the lower limit A  2 cm = 0.02 m and the upper limit B 3 cm = 0.03 m

           V_{b} - V_{a} = - α (0.03 - 0.02) + β (1 / 0.03 - 1 / 0.02)

            V_{b} - V_{a} = - 600 0.01 + 5 (-16.67) = -6 - 83.33

            V_{b} - V_{a} = - 89.3 V

As they ask us the reverse case

             V_{b} - V_{a} = - V_{b} - V_{a}

             V_{a} - V_{b} = 89.3

3 0
4 years ago
Researchers conducted an experiment to identify the effects of three different hand sanitizers on the growth of bacteria. The re
pickupchik [31]
Picture ? I need a visual reference
7 0
4 years ago
Read 2 more answers
Other questions:
  • Is everyone in your class able to hear a quiet sound equally well?
    6·1 answer
  • A small smooth object slides from rest down a smooth inclined plane inclined at 30 degrees to the horizontal. What is (i) the ac
    10·1 answer
  • If the particles of the medium are vibrating to and fro in the same direction of energy transport, then the wave is a ____ wave.
    8·1 answer
  • Check My Answers Please!
    6·1 answer
  • Which statement describes the relationship of resistance and current
    6·1 answer
  • HELP!! Worth a lot of points :) <br> (Physics question)
    8·2 answers
  • A driver traveling at 40 m/s slams on his brakes the vehicle completely stops in five seconds how far to the vehicle go while st
    8·2 answers
  • Help! 200 g of water is heated and its temperature goes from 280 K to 300 K. What is the mass?
    5·1 answer
  • A 350kg motorcycle is moving at 20m/s. It then speeds up to 30m/s. How much work did the engine do to accelerate?
    10·1 answer
  • Question 3. A wire 25.0cm long lies along the z-axis and carries a current of 9.00A in the +z-direction. The a magnetic field is
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!