Answer:
C. Pulmonary endurance
Explanation:
I'm pretty sure it's "C" because cardiovascular and pulmonary endurance are the same thing and usually you'd hear cardiovascular more than pulmonary.
Sorry if I'm wrong!
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
Moment of inertia of the system about an axis passing through B and C is given as




Part b)
Moment of inertia of the system about an axis passing through A and C is given as




Part c)
Moment of inertia of the system about an axis passing through the center of the square and perpendicular to the plane of the square




Answer:
v₁ = -0.8087 m / s
Explanation:
To solve this problem we can use the conservation of momentum, for this we define a system formed by the man, the skateboard and the brick, therefore the force during the separation is internal and the momentum is conserved
Initial instant. When they are united
p₀ = 0
Final moment. After throwing the brick
= (m_man + m_skate) v1 + m_brick v2
the moment is preserved
p₀ = p_{f}
0 = (m_man + m_skate) v₁ + m_brick v₂
v₁ = -
the negative sign indicates that the two speeds are in the opposite direction
let's calculate
v₁ = -
v₁ = -0.8087 m / s
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
Weight = electric force
<span>mg = qE </span>
<span>6.64x10^-27 x 9.81 = (2 x 1.60x10^-19) E
</span>qE =mg,
<span>E = mg/q = 6.64•10^-27•9.8/2•1.6•10^-19 =2.03•10^-7 V/m</span>
I attached a free body diagram for a better understanding of this problem.
We start making summation of Moments in A,



Then we make a summation of Forces in Y,



At the end we calculate the angle with the sin.

