The whole question is talking about the amplitude of a wave
that's transverse and wiggling vertically.
Equilibrium to the crest . . . that's the amplitude.
Crest to trough . . . that's double the amplitude.
Trough to trough . . . How did that get in here ? Yes, that's
the wavelength, but it has nothing to do
with vertical displacement.
Frequency . . . that's how many complete waves pass a mark
on the ground every second. Doesn't belong here.
Notice that this has to be a transverse wave. If it's a longitudinal wave,
like sound or a slinky, then it may not have any displacement at all
across the direction it's moving.
It also has to be a vertically 'polarized' wave. If it's wiggling across
the direction it's traveling BUT it's wiggling side-to-side, then it has
no vertical displacement. It still has an amplitude, but the amplitude
is all horizontal.
Answer:
b. It is dropped
Explanation:
If the initial velocity is zero, the object move from rest. That happens if the object is dropped
That's a not-bad description of a capacitor.
An example of a hypothesis for an experiment might be: “A basketball will bounce higher if there is more air it”
Step one would be to make an observation... “hey, my b-ball doesn’t have much air in it, and it isn’t bouncing ver high”
Step two is to form your hypothesis: “A basketball will bounce higher if there is more air it”
Step three is to test your hypothesis: maybe you want to drop the ball from a certain height, deflate it by some amount and then drop it from that same height again, and record how high the ball bounced each time.
Here the independent variable is how much air is in the basketball (what you want to change) and the dependent variable is how high the b-ball will bounce (what will change as a result of the independent variable)
Step four is to record all of your results and step five is to analyze that data. Does your data support your hypothesis? Why or why not?
You should only test one variable at a time because it is easier to tell why the results are how they are; you only have one cause.
Hope this helps!
The energy carried by the incident light is
where h is the Planck constant and f is the frequency of the light. The threshold frequency is the frequency that corresponds to the minimum energy needed to eject the electrons from the metal, so if we substitute the threshold frequency in the formula, we get the minimum energy the light must have to eject the electrons: