1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
brilliants [131]
3 years ago
15

When two objects collide is the momentum before equal to the momentum after the collision? What happens to the individual carts

momentum in terms of momentum before and after collision?
Physics
1 answer:
Alex787 [66]3 years ago
7 0

Answer:

a collision occuring between two objects in an isolated system, the total momentum of the two objects after the collision. That is, the momentum lost by object 1 is equal to the momentum gained by object 2.

thank you.

You might be interested in
What are some possible examples of genetic characteristics that can be passed down to child??????
elena-s [515]
They can have a close similar appearance to the parents, have close relation of child reactions.


for example, everyone born in my father's side of the family had the tendency to bump their head on something as they fall asleep up to the point when you are a toddler.
8 0
3 years ago
Read 2 more answers
Object A has 27 J of kinetic energy. Object B has one-quarter the mass of object A.
andreev551 [17]

Answer:

the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

Explanation:

Given;

kinetic energy of object A, = 27 J

let the mass of object A = m_A

then, the mass of object B = m_B = \frac{m_A}{4}

work done on object A = -18 J

work done on object B = -18 J

let v_i be the initial speed

let v_f be the final speed

For object A;

K.E_A = 27\\\\\frac{1}{2} m_A v_i^2 = 27\\\\m_A v_i^2  = 54\\\\m_A = \frac{54}{v_i^2} ----Equation \ (1)\\\\Apply \ work-energy \ theorem;\\\\\delta K.E_A = -18\\\\\frac{1}{2} m_A v_f^2 - \frac{1}{2} m_A v_i^2 = -18\\\\\frac{1}{2} m_A ( v_f^2 \ -  v_i^2 )\ =- 18\\\\v_f^2 \ -  v_i^2  = -\frac{36}{m_A} ---Equation \ (2)\\\\v_f^2 \ -  v_i^2  = -\frac{36v_i^2}{54}\\\\ v_f^2 \ =v_i^2 - \frac{36v_i^2}{54}\\\\ v_f^2 = \frac{54v_i^2 -36v_i^2 }{54} \\\\v_f^2 = \frac{18v_i^2}{54} \\\\v_f^2 = \frac{v_i^2}{3} \\\\

v_f = \sqrt{\frac{v_i^2}{3} }\\\\v_f = \frac{1}{\sqrt{3} } \ v_i\\\\

Thus, the final speed of object A changed by a factor of  \frac{1}{\sqrt{3} } = 0.58

To obtain the change in the final speed of object B, apply the following equations.

K.E_B_i = \frac{1}{2} m_Bv_i^2\\\\m_B = \frac{m_A}{4} \\\\K.E_B_i = \frac{1}{2}(\frac{m_A}{4} )v_i^2\\\\K.E_B_i = \frac{m_Av_i^2}{8} \\\\But, \ m_Av_i^2 = 54 \\\\K.E_B_i = \frac{54}{8} \\\\Apply \ work-energy \ theorem ;\\\\\delta K.E = -18\\\\K.E_f -K.E_i = -18\\\\\frac{1}{2}m_Bv_f^2 - \frac{1}{2} m_Bv_i^2 = -18\\\\Recall \ m_B =  \frac{m_A}{4} \\\\\frac{1}{2}(\frac{m_A}{4} )v_f^2 - \frac{1}{2}(\frac{m_A}{4} )v_i^2 = -18\\\\\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\

\frac{1}{2}\times \frac{m_A}{4} (v_i^2 -v_f^2) = 18\\\\v_i^2 -v_f^2 = \frac{8}{m_A} \times 18\\\\v_i^2 -v_f^2 =\frac{144}{m_A} \\\\But , m_A = \frac{54}{v_i^2} \\\\v_i^2 -v_f^2 =\frac{144v_i^2}{54} \\\\v_f^2 = v_i^2 - \frac{144v_i^2}{54}\\\\v_f^2 = \frac{54v_i^2-144v_i^2}{54}\\\\ v_f^2 = \frac{-90v_i^2}{54} \\\\v_f^2 = \frac{-5v_i^2}{3} \\\\|v_f| = \sqrt{\frac{5v_i^2}{3}} \\\\|v_f| = \sqrt{\frac{5}{3}} \ v_i

Thus, the final speed of object B changed by a factor of \sqrt{\frac{5}{3} } = 1.29

3 0
3 years ago
Which of the following objects has the greatest density
maks197457 [2]
The density is determined on the steepness of the slope. The greater the density is bases upon the steepest slope. To conclude, I'd say Line A has the steepest slope therefore has the greatest density.
6 0
3 years ago
Read 2 more answers
Select the correct answer.
satela [25.4K]

Answer:

all of the above

Explanation:

muscular endurance is the ability to be able to do muscular activities for a long period of time. The longer you do it, the better you can handle it and for longer.

7 0
3 years ago
A laser pulse of duration 25 ms has a total energy of 1.4 J. The wavelength of this radiation is
SpyIntel [72]

Answer:

n = 4 x 10¹⁸ photons

Explanation:

First, we will calculate the energy of one photon in the radiation:

E = \frac{hc}{\lambda}\\\\

where,

E = Energy of one photon = ?

h = Plank's Constant = 6.625 x 10⁻³⁴ J.s

c = speed of light = 3 x 10⁸ m/s

λ = wavelength of radiation = 567 nm = 5.67 x 10⁻⁷ m

Therefore,

E = \frac{(6.625\ x\ 10^{-34}\ J.s)(3\ x\ 10^8\ m/s)}{5.67\ x\ 10^{-7}\ m}

E = 3.505 x 10⁻¹⁹ J

Now, the number of photons to make up the total energy can be calculated as follows:

Total\ Energy = nE\\1.4\ J = n(3.505\ x\ 10^{-19}\ J)\\n = \frac{1.4\ J}{3.505\ x\ 10^{-19}\ J}\\

<u>n = 4 x 10¹⁸ photons</u>

8 0
3 years ago
Other questions:
  • The density of aluminum is 2.7 g/cm3. What is the volume of a piece of aluminum if its mass is 8.1 grams?
    12·1 answer
  • Which is the magnitude of the vector 13 m/s to the east
    6·2 answers
  • PLEASE HELP - basic SUVAT stuff
    12·1 answer
  • A que profundidad esta nadando una persona dentro de una alberca si la presión absoluta sobre ésta es de 156kPa?
    11·1 answer
  • A 2120 kg car traveling at 13.4 m/s collides with a 2810 kg car that is initally at rest at a stoplight. The cars stick together
    14·1 answer
  • Please! I cant fail this! Im literally freaking out.....
    6·1 answer
  • Why would an older house have more safety risks then a newer house
    15·2 answers
  • How does eating food produced locally benefit the environment?
    10·2 answers
  • An arrow of mass 20 g is shot horizontally into a bale of hay, striking the hay with a velocity of 60 m/s. It penetrates a depth
    14·1 answer
  • For this situation, i push on a heavy chair. suppose i push moderately on the chair, and this time the chair does move. then the
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!