Answer:
λ = 3 10⁻⁷ m, UV laser
Explanation:
The diffraction phenomenon is described by the expression
a sin θ = m λ
let's use trigonometry
tan θ = y / L
as in this phenomenon the angles are small
tan θ =
= sin θ
sin θ = y / L
we substitute
a y / L = m λ
let's apply this equation to the initial data
a 0.04 / L = 1 600 10⁻⁹
a / L = 1.5 10⁻⁵
now they tell us that we change the laser and we have y = 0.04 m for m = 2
a 0.04 / L = 2 λ
a / L = 50 λ
we solve the two expression is
1.5 10⁻⁵ = 50 λ
λ = 1.5 10⁻⁵ / 50
λ = 3 10⁻⁷ m
UV laser
Answer:
1) Acids have a sour taste , Bases have a bitter taste.
2) Acids turn blue litmus paper into red , Bases turn red litmus paper into blue.
3) Acids react with most metals to form Hydrogen gas but only a few base react with a few metals to form Hydrogen gas
4) Both will conduct electricity. Both acids & bases are good electrolytes. Strong acids & bases conduct more electricity than that of weak acids & bases
The first rule of vectors is that the horizontal and vertical components are separate. Disregarding air resistance, the only thing we have to worry about is gravity.
The appropriate suvat to use for the vertical component is v = u +at
I will take a to be -9.81, you may have to change it to be 10 if your qualification likes g to be 10.
v = 30 + (-9.81x2)
v = 30 - 19.62
=10.38m/s
Therefore we know that after 2.0 s the vertical component will be 10.38ms^-1, ie 10m/s as the answers given are all to 2sf.
The horizontal component is completely separate to the vertical component and since there is no air resistance, it will remain constant throughout the projectiles trajectory. Therefore it will remain at 40ms^-1.
Combining this together we get:
(1) vx=40m/s and vy=10m/s
Answer:
Short circuit
Explanation:
The given figure shows a short circuit. It is defined as the circuit which allows the flow of electric current when there is no resistance. It shows a battery, bulb and connecting wires.
The wire across the bulb is connected from one terminal to another without any resistance in between them.
So, the correct option is (d) " short circuit ".
Answer:
the answer is b
Explanation:
Second and third class levers are differentiated by <u>the location of the </u><u>load.</u>
<em>Hope</em><em> </em><em>this</em><em> </em><em>help</em><em> </em><em>you</em><em> </em><em>out </em><em>and have</em><em> </em><em>a </em><em>nice</em><em> </em><em>day </em><em>=</em><em>)</em>