Answer:
-75 cm^3/min
Explanation:
Given from Boyle's law;
PV=C
From product rule;
VdP/dt + PdV/dt = dC/dt
but dC/dt = 0, V= 500 cm^3, P= 200kPa, dP= 30kPa/min
PdV/dt = dC/dt - VdP/dt
dV/dt = dC/dt - VdP/dt/ P
substituting values;
dV/dt = 0 - (500 * 30)/200
dV/dt = -75 cm^3/min
Answer:
4
Explanation:
Ionization energy can be defined as the energy required for an atom to lose its valence electron to form an ion. Hence, it deals with how easily an atom would lose its electron and form an ion. As the valence electrons are lossless bound to the outermost shell, they can easily be lost without much problem or better still they can be lost easily. Hence, the energy change here is small and thus we can conclude that the ionization energy here is low.
The electron affinity works quite differently from the ionization energy. It deals with the way in which a neutral atom attracts an electron to form an ion. For an electron with loose valence electrons, the sure fact is that it does not really need these electrons. Hence, there is no need for an high electron affinity on its part. Thus, we conclude that the electron affinity is also low
Answer:
So 1 mole
Explanation:
PV = nRT
P = Pressure atm
V = Volume L
n = Moles
R = 0.08206 L·atm·mol−1·K−1.
T = Temperature K
standard temperature = 273K
standard pressure = 1 atm
22.4 liters of oxygen
Ok so we have
V = 22.4
P = 1 atm
PV = nRT
n = PV/RT
n = 22.4/(0.08206 x 273)
n = 22.4/22.40
n = 1 mole
Answer:
The graph of this equation is shown in Figure 1. As you can see this is a straight line with negative slope and does not intersect the y-axis. So the ...
Explanation: