Answer:
The magnitude of
is 4 V and phase of input voltage is zero
Explanation:
Given:
Output voltage 
Resistance
kΩ
Voltage gain 
For finding feedback resistance we use gain equation
Gain equation for non inverting op-amp is given by,


≅ 10 kΩ
For finding input voltage we use,


V
The Phase of
is zero because output voltage phase is 360°
Therefore, the magnitude of
is 4 V and phase of input voltage is zero
I am going to assume 2.1 metres per second and that we're rounding acceleration due to gravity to -10 metres per second squared. At the highest point, velocity is going to be 0. v= intial velocity + acceleration*time, sub in 0 for velocity, 2.1 for initial velocity and -10 for acceleration to get 0= 2.1-10t. Now solve for t. t=0.21 seconds.
Answer:
14 m/s
Explanation:
The following data were obtained from the question:
Mass = 50 kg
Initial velocity (u) = 0 m/s
Height (h) = 10 m
Acceleration due to gravity (g) = 9.8 m/s²
Final velocity (v) =?
The velocity (v) with which the person hit the water can be obtained as shown below:
v² = u² + 2gh
v² = 0² + (2 × 9.8 × 10)
v² = 0 + 196
v² = 196
Take the square root of both side
v = √196
v = 14 m/s
Therefore, he will hit the water with a speed of 14 m/s
<span>as i recall, gravity is relative to the square of the distance.
so if the distance is tripled, then the gravitational attraction would be reduced by 3^2 or 1/9.
so F1 = F0/9
if the satellite is 2R from the center, and is moved to 4R (doubled would be 3R, tripled is 4R) then the distance is twice, and gravity would be 2^2 or 1/4.
</span>
Answer:
Total mechanical energy is the sum of potential energy plus kinetic energy. The kinetic energy will be 250 [J] and the potential energy is zero, therefore Total mechanical energy will be 250 + 0 =250[J]
Explanation:
This is a problem that applies the principle of energy conservation, i.e. mechanical energy that will be transformed into kinetic energy. We need to identify what kind of energy we have depending on the position of the ball with respect to the reference axis we take.
The reference axis or reference point is the point at which the potential energy is equal to zero, for this case we will take the ground as our reference point.
We know that the potential energy is defined by:
![E_{p}=m*g*h\\ where:\\m=mass[kg]\\g=gravity[m/s^2]\\h=elevation[m]](https://tex.z-dn.net/?f=E_%7Bp%7D%3Dm%2Ag%2Ah%5C%5C%20where%3A%5C%5Cm%3Dmass%5Bkg%5D%5C%5Cg%3Dgravity%5Bm%2Fs%5E2%5D%5C%5Ch%3Delevation%5Bm%5D)
We can clear the mass from this equation:
![m=\frac{E_{p} }{(g*h)} \\m=\frac{250 }{(9.81*5)} \\\\m=5.09[kg]](https://tex.z-dn.net/?f=m%3D%5Cfrac%7BE_%7Bp%7D%20%7D%7B%28g%2Ah%29%7D%20%5C%5Cm%3D%5Cfrac%7B250%20%7D%7B%289.81%2A5%29%7D%20%5C%5C%5C%5Cm%3D5.09%5Bkg%5D)
When this body falls its potential energy will decrease but its kinetic energy will increase and reach its maximum value when the ball reaches the ground.
In such a way that its potential energy would be transformed into kinetic energy.
![E_{k} = E_{p} \\E_{k} =kinetic energy [J]](https://tex.z-dn.net/?f=E_%7Bk%7D%20%3D%20E_%7Bp%7D%20%5C%5CE_%7Bk%7D%20%3Dkinetic%20energy%20%5BJ%5D)
Since the potential energy has been transformed all into kinetic energy the amount of energy is conserved, therefore the total mechanical energy will remain the same.