<span>Inertia keeps us orbiting because any object with mass has the tendency to resist changes to their direction and speed of movement. Combine that with the interaction of the gravitational attraction of the sun, and that is what keeps Earth in orbit. The sun’s gravitational force is one that is proportional to Earth’s mass, and it acts in a way that is almost exactly perpendicular to Earth’s motion. This keeps Earth from spinning into the sun or far away from it.</span>
(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
<h3>
Conservation of mechanical energy</h3>
The effect of height and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;
ΔK.E = ΔP.E
¹/₂m(v²- u²) = mg(hi - hf)
¹/₂(v²- u²) = g(0 - hf)
v² - u² = -2ghf
v² = u² - 2ghf
where;
- v is the final velocity at upper level
- u is the initial velocity
- hf is final height
- g is acceleration due to gravity
when u² = 2gh, then v² = 0,
when gravity reduces, u² > 2gh, and v² > 0
Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).
<h3>Final speed</h3>
v² = u² - 2ghf
where;
- u is the initial speed = 5 m/s
- g is acceleration due to gravity and its less than 9.8 m/s²
- v is final speed
- hf is equal height
Since g on Epislon is less than 9.8 m/s² of Earth;
5² - 2ghf > 3 m/s
Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.
Learn more about conservation of mechanical energy here: brainly.com/question/6852965
This question involves the concepts of dynamic pressure, volume flow rate, and flow speed.
It will take "5.1 hours" to fill the pool.
First, we will use the formula for the dynamic pressure to find out the flow speed of water:

where,
v = flow speed = ?
P = Dynamic Pressure = 55 psi
= 379212 Pa
= density of water = 1000 kg/m³
Therefore,

v = 27.54 m/s
Now, we will use the formula for volume flow rate of water coming from the hose to find out the time taken by the pool to be filled:

where,
t = time to fill the pool = ?
A = Area of the mouth of hose =
= 1.98 x 10⁻⁴ m²
V = Volume of the pool = (Area of pool)(depth of pool) = A(1.524 m)
V =
= 100.1 m³
Therefore,

<u>t = 18353.5 s = 305.9 min = 5.1 hours</u>
Learn more about dynamic pressure here:
brainly.com/question/13155610?referrer=searchResults
Answer:
-414.96 N
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration


The force the ground exerts on the parachutist is -414.96 N
If the distance is shorter than 0.75 m then the acceleration will increase causing the force to increase