1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
2 years ago
10

(iii) What does Electromagnetic waves move from one place to another?* 1 point

Physics
1 answer:
mart [117]2 years ago
8 0
The answer is Energy

Explanation: in sound waves , energy is transferred through vibration of air particles or particles of a solid through which the sound travels
You might be interested in
How does the sun's gravity and the earth inertia keep us orbiting in the solar system
scZoUnD [109]
<span>Inertia keeps us orbiting because any object with mass has the tendency to resist changes to their direction and speed of movement. Combine that with the interaction of the gravitational attraction of the sun, and that is what keeps Earth in orbit. The sun’s gravitational force is one that is proportional to Earth’s mass, and it acts in a way that is almost exactly perpendicular to Earth’s motion. This keeps Earth from spinning into the sun or far away from it.</span>
6 0
3 years ago
If a snowboarder’s initial speed is 4 m/s and comes to rest when making it to the upper level. With a slightly greater initial s
Brrunno [24]

(a) At a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).

(b) If the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.

<h3>Conservation of mechanical energy</h3>

The effect of height  and gravity on speed on the given planet Epislon is determined by applying the principle of conservation of mechanical energy as shown below;

ΔK.E = ΔP.E

¹/₂m(v²- u²) = mg(hi - hf)

¹/₂(v²- u²) = g(0 - hf)

v² - u² = -2ghf

v² = u² - 2ghf

where;

  • v is the final velocity at upper level
  • u is the initial velocity
  • hf is final height
  • g is acceleration due to gravity

when u² = 2gh, then v² = 0,

when gravity reduces, u² > 2gh, and v² > 0

Thus, at a corresponding hill on Earth and a lesser gravity on planet Epslion, the height of the hill will cause a reduction in the initial speed of the snowboarder from 4 m/s to a value greater than zero (0).

<h3>Final speed</h3>

v² = u² - 2ghf

where;

  • u is the initial speed = 5 m/s
  • g is acceleration due to gravity and its less than 9.8 m/s²
  • v is final speed
  • hf is equal height

Since g on Epislon is less than 9.8 m/s² of Earth;

5² - 2ghf > 3 m/s

Thus, if the initial speed at the bottom of the hill is 5 m/s, the final speed at the top of the hill be greater than 3 m/s.

Learn more about conservation of mechanical energy here: brainly.com/question/6852965

5 0
2 years ago
An above ground swimming pool of 30 ft diameter and 5 ft depth is to be filled from a garden hose (smooth interior) of length 10
STALIN [3.7K]

This question involves the concepts of dynamic pressure, volume flow rate, and flow speed.

It will take "5.1 hours" to fill the pool.

First, we will use the formula for the dynamic pressure to find out the flow speed of water:

P=\frac{1}{2}\rho v^2\\\\v=\sqrt{\frac{2P}{\rho}}

where,

v = flow speed = ?

P = Dynamic Pressure = 55 psi(\frac{6894.76\ Pa}{1\ psi}) = 379212 Pa

\rho = density of water = 1000 kg/m³

Therefore,

v=\sqrt{\frac{2(379212\ Pa)}{1000\ kg/m^3}}

v = 27.54 m/s

Now, we will use the formula for volume flow rate of water coming from the hose to find out the time taken by the pool to be filled:

\frac{V}{t} = Av\\\\t =\frac{V}{Av}

where,

t = time to fill the pool = ?

A = Area of the mouth of hose = \frac{\pi (0.015875\ m)^2}{4} = 1.98 x 10⁻⁴ m²

V = Volume of the pool = (Area of pool)(depth of pool) = A(1.524 m)

V = [\frac{\pi (9.144\ m)^2}{4}][1.524\ m] = 100.1 m³

Therefore,

t = \frac{(100.1\ m^3)}{(1.98\ x\ 10^{-4}\ m^2)(27.54\ m/s)}\\\\

<u>t = 18353.5 s = 305.9 min = 5.1 hours</u>

Learn more about dynamic pressure here:

brainly.com/question/13155610?referrer=searchResults

7 0
2 years ago
A 42.0-kg parachutist is moving straight downward with a speed of 3.85 m/s. (a) If the parachutist comes to rest with constant a
RideAnS [48]

Answer:

-414.96 N

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

v^2-u^2=2as\\\Rightarrow a=\frac{v^2-u^2}{2s}\\\Rightarrow a=\frac{0^2-3.85^2}{2\times 0.75}\\\Rightarrow a=-9.88\ m/s^2

F=ma\\\Rightarrow F=42\times -9.88\\\Rightarrow F=-414.96\ N

The force the ground exerts on the parachutist is -414.96 N

If the distance is shorter than 0.75 m then the acceleration will increase causing the force to increase

5 0
3 years ago
Help ASAP plsssss:///
kenny6666 [7]

Answer:

c

Explanation:

8 0
3 years ago
Other questions:
  • An x-ray beam with wavelength 0.240 nm is directed at a crystal. as the angle of incidence increases, you observe the first stro
    6·1 answer
  • What happens to lava as its temperature increases?
    15·1 answer
  • What is velocity and speed
    7·2 answers
  • The student quickly discovers that placing the marshmallow over the flame is more effective than heating the marshmallow on the
    6·1 answer
  • Explain how the particles of solids move
    12·1 answer
  • Air pollution is a negative effect of using this renewable resource to generate power.
    7·2 answers
  • Gravitational potential is the energy due to an object's:
    9·2 answers
  • Ions form bonds by __________ electrons.
    12·2 answers
  • Please what are the laws of Isaac Newton for Motion​
    13·1 answer
  • How can the length of day affect temperatures on Earth?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!