1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gekata [30.6K]
2 years ago
10

(iii) What does Electromagnetic waves move from one place to another?* 1 point

Physics
1 answer:
mart [117]2 years ago
8 0
The answer is Energy

Explanation: in sound waves , energy is transferred through vibration of air particles or particles of a solid through which the sound travels
You might be interested in
How is color related to wavelength?
erma4kov [3.2K]
B, each color has a different wavelength and that allows the eye to see each color different
4 0
3 years ago
Read 2 more answers
A 16-cm-long straight line connects the center of a turntable to its edge. The turntable rotates counter-clockwise at 45 rpm. A
Bond [772]

Answer:

\mathbf{V_x = 3.25 \ cm/s}

\mathbf{V_y = 1.29\ cm/s}

Explanation:

Given that:

The radius of the table r = 16 cm  = 0.16 m

The angular velocity = 45 rpm

= 45 \times \dfrac{1}{60}(2 \pi)

= 4.71 rad/s

However, the relative velocity of the bug with turntable is:

v = 3.5 cm/s = 0.035 m/s

Thus, the time taken to reach the bug to the end is:

t = \dfrac{r}{v}

t = \dfrac{0.16}{0.035}

t = 4.571s

So the angle made by the radius r  with the horizontal during the time the bug gets to the end is:

\theta = \omega t

\theta = 4.712 \times 4.571

\theta = 21.54^0

Now, the velocity components of the bug with respect to the table is:

V_x = Vcos \theta

V_x = 0.035 \times cos (21.54^0)

V_x = 0.0325 \ m/s

\text {V_x = 3.25 \ cm/s}\mathbf{V_x = 3.25 \ cm/s}

Also, for the vertical component of the velocity V_y

V_y = V sin \theta

V_y = 0.035 \times sin (21.54^0)

V_y = 0.0129\ m/s

\mathbf{V_y = 1.29\ cm/s}

6 0
2 years ago
What makes a planet a terrestrial?
Anika [276]

A, C, B hope this helps

God bless

3 0
3 years ago
What has to happen for a force to do work on an object?
dexar [7]
It has to move through a distance over time.
4 0
3 years ago
A bullet fired into a fixed target loses half of its velocity after penetrating 3 cm. How much further it will penetrate before
Darina [25.2K]

{\mathfrak{\underline{\purple{\:\:\: Given:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{First \: penetrating \: length\:(s_{1}) = 3 \: cm}

\\

{\mathfrak{\underline{\purple{\:\:\:To \:Find:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Left \: Penetration \: length \: before  \: it \: comes \: to \: rest \:( s_{2} )}

\\

{\mathfrak{\underline{\purple{\:\:\: Calculation:-\:\:\:}}}} \\ \\

\:\:\:\:\bullet\:\:\:\sf{Let \: Initial \: velocity   = v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{Left \: velocity \: after \:  s_{1} \: penetration =  \dfrac{v}{2}  \:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{s_{1} =  \dfrac{3}{100}  = 0.03 \: m}

\\

☯ As we know that,

\\

\dashrightarrow\:\: \sf{ {v}^{2}  =  {u}^{2} + 2as }

\\

\dashrightarrow\:\: \sf{  \bigg(\dfrac{v}{2} \bigg)^{2}  =  {v}^{2}   + 2a s_{1}}

\\

\dashrightarrow\:\: \sf{  \dfrac{ {v}^{2} }{4}  =  {v}^{2}  + 2 \times a \times 0.03  }

\\

\dashrightarrow\:\: \sf{ \dfrac{ {v}^{2} }{4}  -  {v}^{2}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{\dfrac{ -  3{v}^{2} }{4}  = 0.06 \times a  }

\\

\dashrightarrow\:\: \sf{a =  \dfrac{ - 3 {v}^{2} }{4 \times 0.06}  }

\\

\dashrightarrow\:\: \sf{ a =  \dfrac{ - 25 {v}^{2} }{2}\:m/s^{2} ......(1) }

\\

\:\:\:\:\bullet\:\:\:\sf{  Initial\:velocity=v\:m/s} \\\\

\:\:\:\:\bullet\:\:\:\sf{ Final \: velocity = 0 \: m/s }

\\

\dashrightarrow\:\: \sf{  {v}^{2}  =  {u}^{2}  + 2as}

\\

\dashrightarrow\:\: \sf{{0}^{2}  =  {v}^{2}  + 2 \times  \dfrac{ - 25 {v}^{2} }{2}  \times s  }

\\

\dashrightarrow\:\: \sf{ -  {v}^{2}  =  - 25 {v}^{2}  \times s  }

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{ -  {v}^{2} }{ - 25 {v}^{2} }}

\\

\dashrightarrow\:\: \sf{  s =  \dfrac{1}{25} }

\\

\dashrightarrow\:\: \sf{ s = 0.04 \: m }

\\

☯ For left penetration (s₂)

\\

\dashrightarrow\:\: \sf{s =  s_{1} +  s_{2}  }

\\

\dashrightarrow\:\: \sf{  0.04 = 0.03 +  s_{2}}

\\

\dashrightarrow\:\: \sf{ s_{2} = 0.04 - 0.03 }

\\

\dashrightarrow\:\: \sf{s_{2} = 0.01 \: m = {\boxed{\sf{\purple{1 \: cm }}} }}

\\

\star\:\sf{Left \: penetration \: before  \: it \: come \: to \: rest \: is \:{\bf{ 1 \: cm}}} \\

4 0
2 years ago
Other questions:
  • On the planet Xenophous a 1.00 m long pendulum on a clock has a period of 1.32 s. What is the free fall acceleration on Xenophou
    12·1 answer
  • They occupy the space surrounding the nucleus of the atom, they have a -1 charge
    10·1 answer
  • Hurricanes are formed due to
    14·2 answers
  • Two electromagnets are running with equal amounts of electric current. Electromagnet A uses a piece of iron as its metal core, w
    14·1 answer
  • The Thomson model of a hydrogen atom is a sphere of positive charge with an electron (a point charge) at its center. The total p
    9·1 answer
  • Which of the following is always the result when a centripetal force is applied?
    13·2 answers
  • What is the maximum density of water​
    10·1 answer
  • Stephanie goes on a giraffe safari in Africa. She travels 8 km north, then 3 km west and then 2 km south.
    9·1 answer
  • A 3.5 kg wooden block is pulled with 12.5 N of force across a rough surface. If the force of friction is 4.8 N, find the net for
    11·1 answer
  • Which element has an isotope with 43 neutrons and a mass number of 76?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!