Answer:
In the third tube, the concentration is 0.16 ug/mL
Explanation:
In the first step, the solution is diluted by 5. Then, the concentration will be
20 ug/mL / 5 = 4 ug/mL
Then, in the second step this 4 ug / ml solution is diluted by a factor of five again:
4 ug /ml / 5 = 0.8 ug/mL
This solution is then diluted again by 5 and the concentration in the third tube will be then:
0.8 ug/mL / 5 = <u>0.16 ug/mL </u>
<u />
Another way to calculate this is to divide the original concentration by the dilution factor ( 5 in this case) elevated to the number of dilutions. In this case:
Concentration in the third tube = 20 ug/mL / 5³ = 0.16 ug/mL
In this reaction, water acts as the base and donates a proton to hydrazine (H2NNH2). Hydrazine becomes protonated: [N2H5]<span>+ And thus hydrazine in this reaction is actually a base. The conjugate base of the acting acid H2O is OH- (hydroxide ion).</span>
Here is the correct question
You mix 125 mL of 0.170 M CsOH with 50.0 mL of 0.425 M HF in a coffee-cup calorimeter, and the temperature of both solutions rises from 20.20 °C before mixing to 22.17 °C after the reaction. What is the enthalpy of reaction per mole of ? Assume the densities of the solutions are all 1.00 g/mL, and the specific heat capacities of the solutions are 4.2 J/g · K. Enthalpy of reaction = kJ/mol
Answer:
75.059 kJ/mol
Explanation:
The formula for calculating density is:

Making mass the subject of the formula; we have :
mass = density × volume
which can be rewritten as:
mass of the solution = density × volume of the solution
= 1.00 g/mL × (125+ 50 ) mL
= 175 g
Specific heat capacity = 4.2 J/g.K
∴ the energy absorbed is = mcΔT
= 175 × 4.2 × (22.17 - 20.00) ° C
= 1594.95 J
= 1.595 J
number of moles of CsOH = 
= 0.2125 mole
Therefore; the enthalpy of the reaction = 
= 
= 75.059 kJ/mol
I believe it's helium at 0.49 A