26. D. crushing the sugar cube and dissolving it in water.
27. A. atom
28. B. molecule
29. B. plum pudding model of Joseph John Thomson
30. B. He used cathode ray tubes which showed that all atoms contain tiny negatively charged subatomic particles or electrons.
31. D. protons and neutrons are relatively heavier than electrons.
Explanation:
because the boy has larger surface area due to which he offers the larger air resistance which decreases the acceleration so, he will fall towards the earth's surface approximately with constant velocity.
<u>Complete Question:</u>
A hockey player swings her hockey stick and strikes a puck. According to Newton’s third law of motion, which of the following is a reaction to the stick pushing on the puck?
A. the puck pushing on the stick
.
B. the stick pushing on the player
.
C. the player pushing on the stick
.
D. the puck pushing on the player.
<u>Correct Option:</u>
According to Newton’s third law of motion the puck pushing on the stick is a reaction to the stick pushing on the puck.
<u>Option: A</u>
<u>Explanation:</u>
As when the hockey exert force on the puck (which is a flat ball basically used in ice hockey) then this action by hockey will receive equal and opposite reaction by puck. Thus when the stick is pushing on the this flat ball, then puck also push the stick. This is understood by newton's third law pf motion, where action and reaction forces are subject of discussion, displaying their is pair of forces applied among the interacting objects. This form is observed more practically in life and very frequent.
Answer:
i know the questin but i got to try and find it
Explanation:
Answer:
4. B and D
Explanation:
Two points along a transverse wave (such as the one in the figure) are said to be in phase when:
- the vertical position of the two points is the same
- The oscillation of the wave is going in the same way for both points
Basically, we say that two points are in phase when they are separated by a complete cycle (one complete oscillation) of the wave.
For this wave, we see that point B and C have same displacement, but they are not in phase since in B the oscillation is going down while in C is going up.
Instead, B and D are in phase, because they are separated by one complete cycle: both points have same displacement and the oscillation is going in the same way for both of them.