Answer:
1.
2.
3.The results from part 1 and 2 agree when r = R.
Explanation:
The volume charge density is given as

We will investigate this question in two parts. First r < R, then r > R. We will show that at r = R, the solutions to both parts are equal to each other.
1. Since the cylinder is very long, Gauss’ Law can be applied.

The enclosed charge can be found by integrating the volume charge density over the inner cylinder enclosed by the imaginary Gaussian surface with radius ‘r’. The integration of E-field in the left-hand side of the Gauss’ Law is not needed, since E is constant at the chosen imaginary Gaussian surface, and the area integral is

where ‘h’ is the length of the imaginary Gaussian surface.

2. For r> R, the total charge of the enclosed cylinder is equal to the total charge of the cylinder. So,

3. At the boundary where r = R:

As can be seen from above, two E-field values are equal as predicted.
Answer:
<h3>a.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

<h3>b.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

Explanation:
<h2>
a.</h2>
For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient
the formula is:

where I is the intensity of the beam,
is the incident intensity and x is the length of the material traveled.
For our problem, after travelling 1 cm:




After travelling 2 cm:




<h2>b</h2>
The optical density od is given by:
.
So, after travelling 1 cm:




After travelling 2 cm:




Answer:
A. How much matter an object has, plus the magnitude and direction of its motion
Explanation:
Momentum is defined as the product of mass by velocity, in the international system of measurements (SI) momentum has the following Units [kg*m/s].
P = m*v
where:
P = momentum Lineal [kg*m/s]
m = mass [kg]
v = velocity [m/s]
Therefore the answer is A) How much matter an object has, plus the magnitude and direction of its motion
<h2><em>her average speed was 5 meter p/ second
</em></h2><h2><em>
18 kph</em></h2><h2><em> HOPE IT HELPS (◕‿◕✿) </em></h2><h2><em> SMILE!!</em></h2>
Answer:
you need to know the wave length and frequency
Explanation:
it is because of the formula of the wave speed