1) Pushing on a car will not always change the car's mechanical energy, but it does change yours since your physically using most of your energy to push the car.
2) In order for a cars kinetic energy to increase, the car has to be in motion when it is going down a hill, because when you go down hills and objects like that; you tend to increase in kinetic energy.
Answer:
194 kg m²
Explanation:
Use parallel axis theorem:
I = I₀ + mr²
I = 25 kg m² + (1 kg) ((5 m)² + (12 m)²)
I = 25 kg m² + 169 kg m²
I = 194 kg m²
Answer:
Democritus was the first person to say that everything is made of Atoms, a very long time ago
Hope I was helpful
Explanation:
Answer:
what that guy said
Explanation:
because he provides evidence
<span>3598 seconds
The orbital period of a satellite is
u=GM
p = sqrt((4*pi/u)*a^3)
Where
p = period
u = standard gravitational parameter which is GM (gravitational constant multiplied by planet mass). This is a much better figure to use than GM because we know u to a higher level of precision than we know either G or M. After all, we can calculate it from observations of satellites. To illustrate the difference, we know GM for Mars to within 7 significant figures. However, we only know G to within 4 digits.
a = semi-major axis of orbit.
Since we haven't been given u, but instead have been given the much more inferior value of M, let's calculate u from the gravitational constant and M. So
u = 6.674x10^-11 m^3/(kg s^2) * 6.485x10^23 kg = 4.3281x10^13 m^3/s^2
The semi-major axis of the orbit is the altitude of the satellite plus the radius of the planet. So
150000 m + 3.396x10^6 m = 3.546x10^6 m
Substitute the known values into the equation for the period. So
p = sqrt((4 * pi / u) * a^3)
p = sqrt((4 * 3.14159 / 4.3281x10^13 m^3/s^2) * (3.546x10^6 m)^3)
p = sqrt((12.56636 / 4.3281x10^13 m^3/s^2) * 4.458782x10^19 m^3)
p = sqrt(2.9034357x10^-13 s^2/m^3 * 4.458782x10^19 m^3)
p = sqrt(1.2945785x10^7 s^2)
p = 3598.025212 s
Rounding to 4 significant figures, gives us 3598 seconds.</span>