1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vampirchik [111]
2 years ago
5

If a 5-L balloon at 25 degrees celsius were gently heated to 30 degrees celsius, what new volume would the balloon have? Show al

l work for credi
Physics
1 answer:
WITCHER [35]2 years ago
4 0

Answer: 5.08 L.

Explation down below

You might be interested in
a vector is 253 m long and points in a 55.8 degree direction, what’s the y and x- component of the vector?
BartSMP [9]

Well we know the hypotenuse of the triangle which is 253 m. And we know the angle of the triangle which is 55.8 degrees. So we want to find y. And to find y we use sin. And sin is a ratio, the ratio of the opposite leg, and hypotenuse. So sin(55.8) = y/253. Now we solve for y by multiplying both sides by 253. And finally we get 209.25 as the length of the y component.

5 0
3 years ago
A rotating paddle wheel is inserted in a closed pot of water. The stirring action of the paddle wheel heats the water. During th
fgiga [73]

Answer:

the final energy of the system is 35.5 kJ.

Explanation:

Given;

initial energy of the system, E₁ = 10 kJ

heat transferred to the system, q₁  30 kJ

Heat lost to the surrounding, q₂ = 5kJ

heat gained by the system, Q = q₁ - q₂ = 30 kJ - 5kJ = 25 kJ

work done on the system, W = 500 J = 0.5 kJ

Apply first law of thermodynamic,

ΔU = Q + W

where;

ΔU  is change in internal energy

Q is the heat gained by the system

W is work done on the system

ΔU = 25kJ + 0.5 kJ

ΔU = 25.5 kJ

The final energy of the system is calculated as;

E₂ = E₁ + ΔU

E₂ = 10 kJ + 25.5 kJ

E₂ =  35.5 kJ.

Therefore, the final energy of the system is 35.5 kJ.

3 0
2 years ago
Can someone please help me with science.
alekssr [168]

Answer:

The answers to your questions are given below

Explanation:

22. The energy of an electromagnetic wave and it's frequency are related by the following equation:

E = hf

Where:

E => is the energy

h => is the Planck's constant

f => is the frequency

From the equation i.e E = hf, we can conclude that the energy of a wave is directly proportional to it's frequency. This implies that an increase in the frequency of the wave will lead to an increase in the energy of the wave and also, a decrease in the frequency will lead to a decrease in the energy of the wave.

23. Gamma ray and radio wave are both electromagnetic waves. All electromagnetic waves has a constant speed of 3×10⁸ m/s in space.

Thus, gamma ray and radio wave have the same speed in space.

3 0
3 years ago
In which of the following examples does the object have both kinetic and potential energy? Select all that apply.
notsponge [240]
I believe the answer is H for when you bounce it, it has stress when it hits the floor and then goes up giving it kinetic
6 0
3 years ago
Read 2 more answers
A parallel-plate capacitor is charged by connecting it to a battery. If the battery is disconnected and then the separation betw
TEA [102]

Answer:

The charge stored in the capacitor will stay the same. However, the electric potential across the two plates will increase. (Assuming that the permittivity of the space between the two plates stays the same.)

Explanation:

The two plates of this capacitor are no longer connected to each other. As a result, there's no way for the charge on one plate to move to the other. Q, the amount of charge stored in this capacitor, will stay the same.

The formula \displaystyle Q = C\, V relates the electric potential across a capacitor to:

  • Q, the charge stored in the capacitor, and
  • C, the capacitance of this capacitor.

While Q stays the same, moving the two plates apart could affect the potential V by changing the capacitance C of this capacitor. The formula for the capacitance of a parallel-plate capacitor is:

\displaystyle C = \frac{\epsilon\, A}{d},

where

  • \epsilon is the permittivity of the material between the two plates.
  • A is the area of each of the two plates.
  • d is the distance between the two plates.

Assume that the two plates are separated with vacuum. Moving the two plates apart will not affect the value of \epsilon. Neither will that change the area of the two plates.

However, as d (the distance between the two plates) increases, the value of \displaystyle C = \frac{\epsilon\, A}{d} will become smaller. In other words, moving the two plates of a parallel-plate capacitor apart would reduce its capacitance.

On the other hand, the formula \displaystyle Q = C\, V can be rewritten as:

V = \displaystyle \frac{Q}{C}.

The value of Q (charge stored in this capacitor) stays the same. As the value of C becomes smaller, the value of the fraction will become larger. Hence, the electric potential across this capacitor will become larger as the two plates are moved away from one another.  

3 0
3 years ago
Other questions:
  • Someone please help with this question
    7·1 answer
  • Acid rain is formed when chemicals in the air get into rain and up the acidity levels.
    12·2 answers
  • Anybody wanna help? (Picture Included?)
    8·2 answers
  • What is the appropriate age of the earth based on current scientific theory
    10·2 answers
  • 2. In a famous letter to Robert Hooke, Isaac Newton wrote, "If I have seen further it is only by standing on the shoulders of gi
    12·1 answer
  • *WILL MAKE THE BRAINLIEST*
    12·1 answer
  • Which lab equipment is used as a cover to prevent heated materials from splattering out of the container and as a holding plate
    14·1 answer
  • 5. What is the frequency of a sound wave when the speed of the sound is 340 m/s and has a wavelength of 1.21 m?​
    12·1 answer
  • A gauge is attached to a pressurized nitrogen tank reads a gauge pressure of 28 in of mercury. If atmospheric pressure is 14.4 p
    8·1 answer
  • Two positive point charges are 4.9cm apart. If the electric potential energy is 70.0 μJ, what is the magnitude of the force betw
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!