Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
Answer:
6.29 meters.
Explanation:
, where v is the speed of wave and f is the frequency of wave.
We are given that ,
The speed of sound is 346 m/s.
i..e v=346 m/s
A sound wave travels at a frequency of 55 H.
i..e f=55
the wavelength would be 6.29 meters.
This is based on another brainly answer
Link: brainly.com/question/12538018
Work done on the crate is 1411.2 J
Explanation:
Work done is defined as the product of force and the distance moved by the object. The unit of work done is in joules and denoted by the symbol J.
Work done = F * d
where F represents the force and d represents the distance moved by the object.
mass = 72 kg , distance moved by the object is given by 2.0 m
Force F = mass * gravity = 72 * 9.8
= 705.6 N =706 N.
Work done = 706 * 2.0 = 1412 J.
Answer:
heat is the transfer of thermal energy from a system to its surroundings or from ... It is very important to know that, in science, heat and temperature are not the same thing. ... Have you noticed that when you put a cold, metal teaspoon into your hot cup of ... AIM: To investigate which materials are the best conductors of heat.
Explanation:
We can't tell without more information. We know it will be higher than 40 and lower than 75, but we don't know exactly where it will settle. In order to work that out, we would need to know the volumes of the water and the cube, and WHAT metal the cube is made of.