Answer:
a)We know that acceleration a=dv/dt
So dv/dt=kt^2
dv=kt^2dt
Integrating we get
v(t)=kt^3/3+C
Puttin t=0
-8=C
Putting t=2
8=8k/3-8
k=48/8
k=6
Answer:
42.50 dB
Explanation:
Determine the minimum voltage gain
amplitude of input signal ( Vi ) = 15 mV
amplitude of output signal ( Vo) = 2 V
Vo = 2 v
therefore ; minimum gain = Vo / Vi = 2 / ( 15 * 10^-3 )
= 133.33
Minimum gain in DB = 20 log ( 133.33 )
= 42.498 ≈ 42.50 dB
<u>Answer:</u>
<u>of 150 pounds per square inch</u>
Explanation:
Note that the unit for measuring water pressure is called <u> pounds per square inch (psi)</u>
In the case of sprinklers and standpipe systems, a pressure <u>of 150 pounds per square inch</u> was used initially.
Answer:
Final length of the rod = 13.90 in
Explanation:
Cross Sectional Area of the polythene rod, A = 0.04 in²
Original length of the polythene rod, l = 10 inches
Tensile modulus for the polymer, E = 25,000 psi
Viscosity, 
Weight = 358 lbs - f
time, t = 1 hr = 3600 sec
Stress is given by:

Based on Maxwell's equation, the strain is given by:

Strain = Extension/(original Length)
0.39022 = Extension/10
Extension = 0.39022 * 10
Extension = 3.9022 in
Extension = Final length - Original length
3.9022 = Final length - 10
Final length = 10 + 3.9022
Final length = 13.9022 in
Final length = 13.90 in
Answer:
5.118 m^3/hr
Explanation:
Given data:
viscosity of cell broth = 5cP
cake resistance = 1*1011 cm/g
dry basis per volume of filtrate = 20 g/liter
Diameter = 8m , Length = 12m
vacuum pressure = 80 kpa
cake formation time = 20 s
cycle time = 60 s
<u>Determine the filtration rate in volumes/hr expected fir the rotary vacuum filter</u>
attached below is a detailed solution of the question
Hence The filtration rate in volumes/hr expected for the rotary vacuum filter
V' = (
) * 1706.0670
= 5118.201 liters ≈ 5.118 m^3/hr