1) 487 miles / 65 miles per hour = 7.5h at max speed
2) 9.8h - 7.5h = 2.3h rest time avaliable
Answer:
Explanation:
Incomplete question but for understanding.
We want to find the electrical force between two charges, then you can use the coulombs law which states that the force of attraction or repulsion between two charges is directly proportional to the product of the two charges and inversely proportional to the square of their distance apart,
So,
F = kq1•q2 / r²
Where k is a constant and it is given as
K = 8.99 × 10^9 Nm²/C²
q1 and q2 are the charges and in this question it is not given, so the question is incomplete. Let assume that,
q1 = - 1.609 × 10^-19 C electron
q2 = 1.609 × 10^-19 C proton
Since unlike charges attract, then it is force of attraction
Also, r is the distance apart and it is not given, let assume the distance between the two charges is 2 × 10^-5m
Then,
F = kq1•q2 / r²
F = 8.99 × 10^9 × 1.609 × 10^-19 × 1.609 × 10^-19 / (2 × 10^-5)²
F = 5.82 × 10^-19 N
Answer:
b
Explanation:
because it has the biggest number
Answer:
-v/2
Explanation:
Given that:
- Collides with the wall going through a sliding motion on on the plane smooth surface.
- Upon rebounding from the wall its kinetic energy becomes one-fourth of the initial kinetic energy before collision.
<u>We know, kinetic energy is given as:</u>

consider this to be the initial kinetic energy of the body.
<u>Now after collision:</u>


Considering that the mass of the body remains constant before and after collision.

Therefore the velocity of the body after collision will become half of the initial velocity but its direction is also reversed which can be denoted by a negative sign.
Answer:
can u tell what you are doing