Explanation:
It is given that, two teams are playing tug of war.
Force applied by Team A, 
Force applied by Team B, 
We need to find the net force acting on the rope. It is equal to :



So, the net force acting on the rope is 35 N and it is acting toward right. Hence, this is the required solution.
Answer:
The value is 
Explanation:
From the question we are told that
The radius of the inner conductor is 
The radius of the outer conductor is 
The potential at the outer conductor is 
Generally the capacitance per length of the capacitor like set up of the two conductors is
![C= \frac{2 * \pi * \epsilon_o }{ ln [\frac{r_2}{r_1} ]}](https://tex.z-dn.net/?f=C%3D%20%5Cfrac%7B2%20%2A%20%5Cpi%20%2A%20%5Cepsilon_o%20%7D%7B%20ln%20%5B%5Cfrac%7Br_2%7D%7Br_1%7D%20%5D%7D)
Here
is the permitivity of free space with value 
=> ![C= \frac{2 * 3.142 * 8.85*10^{-12} }{ ln [\frac{0.003}{0.001} ]}](https://tex.z-dn.net/?f=C%3D%20%5Cfrac%7B2%20%2A%20%203.142%20%20%2A%208.85%2A10%5E%7B-12%7D%20%20%7D%7B%20ln%20%5B%5Cfrac%7B0.003%7D%7B0.001%7D%20%5D%7D)
=> 
Generally given that the potential of the outer conductor with respect to the inner conductor is positive it then mean that the outer conductor is positively charge
Generally the line charge density of the outer conductor is mathematically represented as

=> 
=> 
Generally the surface charge density is mathematically represented as
here 
=> 
=> 
The pitch of a sound you hear depends on the frequency of the sound wave. A high frequency sound wave has a high pitch, and a low frequency sound wave has a low pitch.
When a net torque is applied to a rigid object, it always produces a <em>change in angular velocity</em>. <em>(e.)</em>