The correct answer is false cause how can u fit your finger in a wall something it's to small
Answer:
v_2 = 2*v
Explanation:
Given:
- Mass of both charges = m
- Charge 1 = Q_1
- Speed of particle 1 = v
- Charge 2 = 4*Q_1
- Potential difference p.d = 10 V
Find:
What speed does particle #2 attain?
Solution:
- The force on a charged particle in an electric field is given by:
F = Q*V / r
Where, r is the distance from one end to another.
- The Net force acting on a charge accelerates it according to the Newton's second equation of motion:
F_net = m*a
- Equate the two expressions:
a = Q*V / m*r
- The speed of the particle in an electric field is given by third kinetic equation of motion.
v_f^2 - v_i^2 = 2*a*r
Where, v_f is the final velocity,
v_i is the initial velocity = 0
v_f^2 - 0 = 2*a*r
Substitute the expression for acceleration in equation of motion:
v_f^2 = 2*(Q*V / m*r)*r
v_f^2 = 2*Q*V / m
v_f = sqrt (2*Q*V / m)
- The velocity of first particle is v:
v = sqrt (20*Q / m)
- The velocity of second particle Q = 4Q
v_2 = sqrt (20*4*Q / m)
v_2 = 2*sqrt (20*Q / m)
v_2 = 2*v
Answer:
6010.457N
Explanation:
Centripetal acceleration = a= V²/R
At a radius of 3.6m and velocity of 16.12m/s,
Acceleration is
a = 16.12²/ 3.6 = 72.182 m/s²
Force = Mass (m) * Acceleration (a)
36 = m * 72.182
m = 36/72.182
At breaking point
Radius = 0.468 m and Velocity = 75.1 m/s
a = V²/R = 75.1²/0.468
a = 12051.3 m/s
F = Mass(m) * Acceleration (a)
F = m * 12051.3
m = F/ 12051.3
Settings the ratio of mass equal
m = m
=> 36/72.182 = F/12051.3
F = 12051.3 * 36/72.182
F = 6010.457N
Answer:
a = 2 m/s^2
which agrees with the third answer option provided.
Explanation:
Recall the kinematic formula for displacement under the action of a constant acceleration "a":
yf - yi = 1/2 a t^2
using the information provided this equation becomes:
9 = 1/2 a (3)^2
solve for a:
9 * 2 / 9 = a
then a = 2 m/s^2
which agrees with the third answer option provided.