Answer : The final temperature of the mixture is 
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.


And as we know that,
Mass = Density × Volume
Thus, the formula becomes,

where,
=
= specific heat of water = same
=
= mass of water = same
=
= density of water = 1.0 g/mL
= volume of water at
= 
= volume of water at
= 
= final temperature of mixture = ?
= initial temperature of water = 
= initial temperature of water = 
Now put all the given values in the above formula, we get:



Therefore, the final temperature of the mixture is 
3.8175407 × 10^-23 g ± 3.3210778 × 10^-32 g
Answer:
0.00840
Explanation:
The computation of the mole fraction is as follow:
As we know that
Molar mass = Number of grams ÷ number of moles
Or
number of moles = Number of grams ÷ molar mass
Given that
Number of moles of CaI2 = 0.400
And, Molar mass of water = 18.0 g/mol
Now Number of moles of water is
= 850.0 g ÷ 18.0 g/mol
= 47.22 mol
And, Total number of moles is
= 0.400 + 47.22
= 47.62
So, Molar fraction of CaI2 is
= 0.400 ÷ 47.62
= 0.00840
1. Observation-- making observations and taking notes about what you see, smell, hear, think, etc.
2. Question-- developing a question to test your observations.
3. Hypothesis-- creating an educated guess as to the answer of your question.