Answer:
Time taken for the capacitor to charge to 0.75 of its maximum capacity = 2 × (Time take for the capacitor to charge to half of its capacity)
Explanation:
The charging of a capacitor/the build up of its voltage follows an exponential progression and is given by
V(t) = V₀ [1 - e⁻ᵏᵗ]
where k = (1/time constant)
when V(t) = V₀/2
(1/2) = 1 - e⁻ᵏᵗ
e⁻ᵏᵗ = 0.5
In e⁻ᵏᵗ = In 0.5 = - 0.693
-kt = - 0.693
kt = 0.693
t = (0.693/k)
Recall that k = (1/time constant)
Time to charge to half of max voltage = T(1/2)
T(1/2) = 0.693 (Time constant)
when V(t) = 0.75
0.75 = 1 - e⁻ᵏᵗ
e⁻ᵏᵗ = 0.25
In e⁻ᵏᵗ = In 0.25 = -1.386
-kt = - 1.386
kt = 1.386
t = 1.386(time constant) = 2 × 0.693(time constant)
Recall, T(1/2) = 0.693 (Time constant)
t = 2 × T(1/2)
Hope this Helps!!!
Answer:
1500Ω
Explanation:
Given data
voltage = 15 V
total Resistance = 4000Ω
potential drop V = 9.375 V
To find out
R2
Solution
we know R1 +R2 = 4000Ω
So we use here Ohm's law to find out current I
current = voltage / total resistance
I = 15 / 4000 = 3.75 ×
A
Now we apply Kirchhoffs Voltage Law for find out R2
R2 = ( 15 - V ) / current
R2 = ( 15 - 9.375 ) / 3.75 ×
R2 = 1500Ω
Answer:
Electromechanical systems or devices are systems or devices that involves the interaction between electrical systems and mechanical systems in which the motion of mechanical parts is converted to electrical energy or made to interact with energy or in which electrical energy is converted to mechanical energy or interacts with a moving mechanical system
Therefore;
Electromechanical systems convert <u>electrical energy</u> input into a <u>mechanical energy</u> output
Explanation:
Answer:
An airfoil creates lift by exerting a downward force on the air as it flows past