When the same species undergoes both oxidation and reduction in a single redox reaction, this is referred to as a disproportionation. Therefore, divide it into two equal reactions.
NO2→NO^−3
NO2→NO
and do the usual changes
First, balance the two half reactions:
3. NO2 +H2O →NO^−3 + 2 H^+ + e−
4. NO2 +2 H^+ + 2e− → NO + H2O
Now multiply one or both half-reactions to ensure that each has the same number of electrons. Here, Eqn (3) x 2 results in each half-reaction having two electrons:
5. 2 NO2 + 2 H2O → 2 NO^−3 + 4H^+ + 2e−
Now add Eqn 4 and 5 (the electrons now cancel each other):
3NO2 + 2H^+ + 2H2O → NO + 2 NO−3 + H2O + 4H+
and cancel terms that’s common to both sides:
3NO2 + H2O → NO + 2NO^−3 + 2H+
This is the net ionic equation describing the oxidation of NO2 to NO3 in basic solution.
Learn more about balancing equation here:
brainly.com/question/26227625
#SPJ4
Answer:
It would be 5.8 times 10^9cm
Answer:
C6 H12 O6 + 6 O2 → 6 C O2 + 6 H2 O + energy
Explanation:
Hey There!
p-aminophenol (109.13 g/mol) + Ac2O (102.09 g/mol) ---> acetominophen (151.16 g/mol)
next, since you already know your limiting reactant (p-aminophenol), convert it to mols :
0.130 g / (109.13 g/mol) = 0.00119 moles
now that's your theoretical max, since its a 1:1 mol ratio, so multiply by the new molecular weight. :
0.00119 * 151.16 = 0.180 g
Hope that helps!
Answer:
The Bohr model shows the atom as a central nucleus containing protons and neutrons with the electrons in circular orbitals at specific distances from the nucleus (Figure 1). These orbits form electron shells or energy levels, which are a way of visualizing the number of electrons in the various shells