Missing question: Write the net ionic equation for the precipitation reaction that occurs when aqueous solutions of ammonium carbonate and cobalt(II) bromide are combined.<span>Balanced chemical reaction:
(NH</span>₄)₂CO₃(aq) + CoBr₂(aq) → CoCO₃(s) + 2NH₄Br(aq).
Net ionic reaction:
2NH₄⁺(aq) + CO²⁻(aq) + Co²⁺(aq) + 2Br⁻(aq) → CoCO₃ + 2NH₄(aq)+ 2Br(aq).
or CO²⁻(aq) + Co²⁺(aq) → CoCO₃(s).
Answer:
D. Many, many years of deposition
Explanation:
The layers of the rocks in one region of the parks are smooth and distinct, which are evidence of many, many years of deposition.
The layers on the rocks are because of different deposition of sediments. Different sediments deposited over the rocks through wind, water and ice over the ages.
Hence, the correct answer is D.
They contain Carbon, Nitrogen, Hydrogen, Oxygen, and Sulfur
Answer:We decided to pasteurize the documents for safekeeping
Explanation:
Answer:
Ionization energy increases going left to right across a period and increases from bottom to top in a group
Electron affinity increases when going up a group
If we are excluding noble gases (aka group 8/18), Chlorine is the element that has the greatest electron affinity. This is because Fluorine's 2p orbital is limited and packed which doesn't quite allow sharing of the orbital with extra electrons easily, while Chlorine has a 3p orbital allowing more space for electrons, where the orbital electrons would be inclined to do so.
Helium is the element with the greatest ionization energy since it's at the top and energy (from Oganesson to Helium) increases when going across a period (from Hydrogen to Helium).