The distance travelled during the given time can be found out by using the equations of motion.
The distance traveled during the time interval is "13810.8 m".
First, we will find the deceleration of the motorcycle by using the first <em>equation of motion</em>:

where,
vi = initial velocity = (518 km/h)
= 143.89 m/s
vf = final veocity = 60 % of 143.89 m/s = (0.6)(143.89 m/s) = 86.33 m/s
a = deceleration = ?
t =time interval = 2 min = 120 s
Therefore,

a = -0.48 m/s²
Now, we will use the second <em>equation of motion </em>to find out the distance traveled (s):

<u>s = 13810.8 m = 13.81 km</u>
<u />
Learn more about the equations of motion here:
brainly.com/question/20594939?referrer=searchResults
The attached picture shows the equations of motion.
Answer:
make a parachute out of the bag connecting to a bowl made out of paper filled with cotton balls. then put the egg in the bowl.
Explanation:
<span>The force would double.</span>
Answer:
ΔL = 3.82 10⁻⁴ m
Explanation:
This is a thermal expansion exercise
ΔL = α L₀ ΔT
ΔT = T_f - T₀
where ΔL is the change in length and ΔT is the change in temperature
Let's reduce the length to SI units
L₀ = 90.5 mm (1m / 1000 mm) = 0.0905 m
let's calculate
ΔL = 25.10⁻⁶ 0.0905 (154.6 - (14.4))
ΔL = 3.8236 10⁻⁴ m
using the criterion of three significant figures
ΔL = 3.82 10⁻⁴ m
Answer:
The height of the object is 5007.4 miles.
Explanation:
Given that,
Weight of object = 200 lb
We need to calculate the value of 
Using formula of gravitational force

Put the value into the formula



We need to calculate the height of the object
Using formula of gravitational force

Put the value into the formula





Hence. The height of the object is 5007.4 miles.