Answer:
The magnitude of the magnetic field made by current in the wire is 3.064 x 10⁻⁶ T.
Explanation:
Given;
length of the straight wire, L = 0.56 m
conventional current, I = 0.4 A
distance of magnetic field from the wire, r = 2.6 cm = 0.026 m
To determine magnitude of magnetic field made by current in the wire, we will apply Bio-Savart Law;

Therefore, the magnitude of the magnetic field made by current in the wire is 3.064 x 10⁻⁶ T.
Each magnet has a north pole and a south pole. We know that, from having played with bar magnets in our childhood, that a magnet's north pole will repel another magnet's north pole and attract its south pole.
From this diagram it is easy to see that the two lower bar magnets not only repel each other, but they are quite attracted to each other since their north and south poles are close together.
Therefore the region between the lower two magnets has the least force of repulsion.
False, that does not apply to some
Answer:
Work done, W = 6 J
Explanation:
It is given that,
Force of gravity acting on the book, weight of the book is 15 N
We need to find the work done in lifting the book straight up for a distance of 0.4 meters.
The weight of the book is acting in downward direction and the book is lifted straight up, it means angle between them is 180 degrees. Work done is given by :

So, the magnitude of work done in lifting the book is 6 joules.
Answer:
According to your question although I think an object undergoing uniform circular motion is moving with a constant speed. Nevertheless, it is accelerating due to its change in direction. The direction of the acceleration is inwards,therefore a force perpendicular to an objects velocity change the direction of the velocity but not its magnitude.