Answer:
A. There is more dissolved oxygen in colder waters than in warm water.
D. If ocean temperature rise, then the risk to the fish population increases.
Explanation:
Conclusion that can be drawn from the two facts stated above:
*Dissolved oxygen is essential nutrient for fish survival in their aquatic habitat.
*Dissolved oxygen would decrease as the temperature of aquatic habit rises, and vice versa.
*Fishes, therefore, would thrive best in colder waters than warmer waters.
The following are scenarios that can be explained by the facts given and conclusions arrived:
A. There is more dissolved oxygen in colder waters than in warm water (solubility of gases decreases with increase in temperature)
D. If ocean temperature rise, then the risk to the fish population increases (fishes will thrive best in colder waters where dissolved oxygen is readily available).
Answer:
False
Explanation:
An object's velocity can be described by it's direction. Because velocity is a vector. Besides velocity and acceleration are different units they can't be described by each other.
Answer:
C.0.28 V
Explanation:
Using the standard cell potential we can find the standard cell potential for a voltaic cell as follows:
The most positive potential is the potential that will be more easily reduced. The other reaction will be the oxidized one. That means for the reactions:
Cu²⁺ + 2e⁻ → Cu E° = 0.52V
Ag⁺ + 1e⁻ → Ag E° = 0.80V
As the Cu will be oxidized:
Cu → Cu²⁺ + 2e⁻
The cell potential is:
E°Cell = E°cathode(reduced) - E°cathode(oxidized)
E°cell = 0.80V - (0.52V)
E°cell = 1.32V
Right answer is:
<h3>C.0.28 V
</h3>
<h3 />
Answer:
There will be more collisions and so a greater pressure. The number of particles is proportional to pressure, if the volume of the container and the temperature remain constant. ... Volume is inversely proportional to pressure, if the number of particles and the temperature are constant.