Answer: D. Slow down the chain reaction by absorbing free neutrons
Explanation: just got it right on the quiz A P E X
The answer will be 17.9 grams
Answer:
t = 7.58 * 10¹⁹ seconds
Explanation:
First order rate constant is given as,
k = (2.303
/t) log [A₀]
/[Aₙ]
where [A₀] is the initial concentraion of the reactant; [Aₙ] is the concentration of the reactant at time, <em>t</em>
[A₀] = 615 calories;
[Aₙ] = 615 - 480 = 135 calories
k = 2.00 * 10⁻²⁰ sec⁻¹
substituting the values in the equation of the rate constant;
2.00 * 10⁻²⁰ sec⁻¹ = (2.303/t) log (615/135)
(2.00 * 10⁻²⁰ sec⁻¹) / log (615/135) = (2.303/t)
t = 2.303 / 3.037 * 10⁻²⁰
t = 7.58 * 10¹⁹ seconds
Sharing of valence electrons.
Explanation:
In a covalent bonds, there is sharing of the valence electrons used in bonding between the two combining species.
The atoms taking part do not have a wide electronegativity difference between them and so they share the valence electrons to complete their octet and ensure their stability.
- For the formation of this bond type, each of the atom requires a odd or unpaired electrons.
- Covalent bonds are formed between atoms having zero or very small electronegativity difference.
Learn more:
Covalent bonds brainly.com/question/10903097
#learnwithBrainly
Answer:
A sample of an ideal gas has a volume of 2.21 L at 279 K and 1.01 atm. Calculate the pressure when the volume is 1.23 L and the temperature is 299 K.
You need to apply the ideal gas law PV=nRT
You have the pressure, P=1.01 atm
you have the volume, V = 2.21 L
The ideal gas constant R= 0.08205 L. atm/ mole.K at 273 K
find n = PV/RT = (1.01 atm x 2.21 L / 0.08205 L.atm/ mole.K x 273 K)
n= 0.1 mole, Now find the pressure for n=0.1 mole, T= 299K and
L=1.23 L
P=nRT/V= 0.1mole x 0.08205 (L.atm/ mole.K x 299 k)/ 1.23 L
= 1.994 atm
Explanation: