gravitational force of planet exerted on its object near the surface is known as weight
so here we know that gravitational force of mars is much less than the gravitational force of Earth
So on the surface of mars the Weight of objects must be much less than the weight of object on surface of Earth
so here correct answer must be
<em>D. Your weight would decrease.</em>
Complete question:
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?
Answer:
The current in the circuit 7 ms later is 0.2499 A
Explanation:
Given;
Ideal inductor, L = 45-mH
Resistor, R = 60-Ω
Ideal voltage supply, V = 15-V
Initial current at t = 0 seconds:
I₀ = V/R
I₀ = 15/60 = 0.25 A
Time constant, is given as:
T = L/R
T = (45 x 10⁻³) / (60)
T = 7.5 x 10⁻⁴ s
Change in current with respect to time, is given as;

Current in the circuit after 7 ms later:
t = 7 ms = 7 x 10⁻³ s

Therefore, the current in the circuit 7 ms later is 0.2499 A
Answer: 1.28 sec
Explanation:
Assuming that the glow following the collision was produced instantaneously, as the light propagates in a straight line from Moon to the Earth at a constant speed, we can get the time traveled by the light applying velocity definition as follows:
V = ∆x / ∆t
Solving for ∆t, we have:
∆t = ∆x/v = ∆x/c = 3.84 108 m / 3.8 108 m/s = 1.28 sec
Answer:
To obtain the power, we first need to find the work made by the force.
1) To calculate the work, we need the next equation:

So the force is given by the problem so our mission is to find 'dx' in terms of 't'
2) we know that:

So we have:

Then:

3) Finally, we replace everything:

After some calculation, we have as a result that the work is:
161.9638 J.
4) To calculate the power we need the next equation:

So
P = 161.9638/4.7 = 34.46 W
Answer:
53.8
Explanation: I plugged it on the formula