Answer:
the correct one is: a diffraction limits the resolving power to approximately the size of the wavelength of the light used
Explanation:
To be able to solve two structures with a light source, the Rayleigh criterion must be met that stable the two structures are solved when the first minimum of diffraction at one point is in the code of the first maximum of the other point
Using this criterion we can find an expression for the first minimization of the diffraction spectrum m = 1
sin θ tea = λ / a
now the structure of the comatose has a separation of around 1 nm and the wavelength of visible light ranges from 400 to 700 nm, when substituting we find
sin θ = 400/1 10
sin θ = 400
sin θ = 700/1
sin θ = 700
These values are neither impossible since the sin function is bounded between -1 to 1, so we cannot see the diffraction
When reviewing the different statements, the correct one is: a diffraction limits the resolving power to approximately the size of the wavelength of the light used:
<u>C</u><u>)</u><u> </u><u>South</u>
As we know that, north is considered as negative, and south as positive. Now, the charge on particle is negative; so, when we will release it, it will move towards the south.
<span>Similar fossils found on different continents helped geologists determine how the continents used to be connected. Mountain belts marked the boundaries of moving plates, which showed in which direction the different continents drifted. Extrapolating from this information, scientists had a rough idea of how the continents were arranged eons ago.</span>
Answer:
The answer is "effective stress at point B is 7382 ksi
"
Explanation:
Calculating the value of Compressive Axial Stress:
![\to \sigma y =\frac{F}{A} = \frac{4 F}{( p d ^2 )} = \frac{(4 x ( - 40000 \ lbf))}{[ p \times (1 \ in)^2 ]} = - 50.9 \ ksi \\](https://tex.z-dn.net/?f=%5Cto%20%5Csigma%20y%20%20%3D%5Cfrac%7BF%7D%7BA%7D%20%3D%20%5Cfrac%7B4%20F%7D%7B%28%20p%20d%20%5E2%20%29%7D%20%3D%20%5Cfrac%7B%284%20x%20%28%20-%2040000%20%5C%20lbf%29%29%7D%7B%5B%20p%20%5Ctimes%20%281%20%5C%20in%29%5E2%20%5D%7D%20%3D%20-%2050.9%20%5C%20ksi%20%5C%5C)
Calculating Shear Transverse:



![\to \sigma' =[ s y^2 +3( t \times y^2 + t yz^2 )] \times \frac{1}{2}\\\\](https://tex.z-dn.net/?f=%5Cto%20%5Csigma%27%20%3D%5B%20s%20y%5E2%20%2B3%28%20t%20%5Ctimes%20y%5E2%20%2B%20t%20yz%5E2%20%29%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C)
![= [ (-50.9)^2 +3((63.7)^2 +(0.17)^2 )] \times \frac{1}{2}\\\\=[2590.81+ 3(4057.69)+0.0289]\times \frac{1}{2}\\\\=[2590.81+12,173.07+0.0289] \times \frac{1}{2}\\\\=14763.9089\times \frac{1}{2}\\\\ = 7381.95445 \ ksi\\\\ = 7382 \ ksi](https://tex.z-dn.net/?f=%3D%20%5B%20%28-50.9%29%5E2%20%2B3%28%2863.7%29%5E2%20%2B%280.17%29%5E2%20%29%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D%5B2590.81%2B%203%284057.69%29%2B0.0289%5D%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D%5B2590.81%2B12%2C173.07%2B0.0289%5D%20%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%3D14763.9089%5Ctimes%20%5Cfrac%7B1%7D%7B2%7D%5C%5C%5C%5C%20%3D%207381.95445%20%5C%20ksi%5C%5C%5C%5C%20%3D%207382%20%5C%20ksi)
'a', 'b', and 'c' are all reasonable statements.