1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
3 years ago
11

The _________ energy of a substance is the total kinetic and potential energies of its atoms and/or molecules.

Chemistry
1 answer:
sineoko [7]3 years ago
6 0

Answer:

Mechanical

Explanation:

this is because mechanical energy is potential and kinetic energy combined both working making mechanical energy so D.mechanical

You might be interested in
PLEASE HELP
Arlecino [84]

Answer:

the answer is c

Explanation:

7 0
3 years ago
How does the density of a gas depend on the molar mass of the gas?
AlladinOne [14]

Answer:

The density of the ideal gas is directly proportional to its molar mass.

Explanation:

Density is a scalar quantity that is denoted by the symbol ρ (rho). It is defined as the ratio of the mass (m) of the given sample and the total volume (V) of the sample.

\rho = \frac{m}{V}                          ......equation (1)

According to the ideal gas law for ideal gas:

PV = nRT                                       ......equation (2)

Here, V is the volume of gas, P is the pressure of gas, T is the absolute temperature, R is Gas constant and n is the number of moles of gas

As we know,

The number of moles: n = \frac{m}{M}

where m is the given mass of gas and M is the molar mass of the gas

So equation (2) can be written as:

PV = \frac{m}{M}RT

⇒ PM= \frac{m}{V} RT

⇒ \frac{PM}{RT}= \frac{m}{V}             ......equation (3)

Now from equation (1) and (3), we get

\frac{PM}{RT}= \frac{m}{V} = \rho  

⇒ Density of an ideal gas: \rho = \frac{PM}{RT}  

⇒ <em>Density of an ideal gas: ρ ∝ molar mass of gas: M</em>

<u>Therefore, the density of the ideal gas is directly proportional to its molar mass. </u>

6 0
3 years ago
The equilibrium constant Kp for the reaction (CH3),CCI (g) = (CH3),C=CH, (g) + HCl (g) is 3.45 at 500. K. (5.00 x 10K) Calculate
Karolina [17]

<u>Answer:</u> The value of K_p for the reaction is 6.32 and concentrations of (CH_3)_2C=CH,HCl\text{ and }(CH_3)_3CCl is 0.094 M, 0.094 M and 0.106 M respectively.

<u>Explanation:</u>

Relation of K_p with K_c is given by the formula:

K_p=K_c(RT)^{\Delta ng}

where,

K_p = equilibrium constant in terms of partial pressure = 3.45

K_c = equilibrium constant in terms of concentration = ?

R = Gas constant = 0.0821\text{ L atm }mol^{-1}K^{-1}

T = temperature = 500 K

\Delta n_g = change in number of moles of gas particles = n_{products}-n_{reactants}=2-1=1

Putting values in above equation, we get:

3.45=K_c\times (0.0821\times 500)^{1}\\\\K_c=\frac{3.45}{0.0821\times 500}=0.084

The equation used to calculate concentration of a solution is:

\text{Molarity}=\frac{\text{Moles}}{\text{Volume (in L)}}

Initial moles of (CH_3)_3CCl(g) = 1.00 mol

Volume of the flask = 5.00 L

So, \text{Concentration of }(CH_3)_3CCl=\frac{1.00mol}{5.00L}=0.2M

For the given chemical reaction:

                (CH_3)_3CCl(g)\rightarrow (CH_3)_2C=CH(g)+HCl(g)

Initial:               0.2                    -                        -

At Eqllm:          0.2 - x               x                       x

The expression of K_c for above reaction follows:

K_c=\frac{[(CH_3)_2C=CH]\times [HCl]}{[(CH_3)_3CCl]}

Putting values in above equation, we get:

0.084=\frac{x\times x}{0.2-x}\\\\x^2+0.084x-0.0168=0\\\\x=0.094,-0.178

Negative value of 'x' is neglected because initial concentration cannot be more than the given concentration

Calculating the concentration of reactants and products:

[(CH_3)_2C=CH]=x=0.094M

[HCl]=x=0.094M

[(CH_3)_3CCl]=(0.2-x)=(0.2-0.094)=0.106M

Hence, the value of K_p for the reaction is 6.32 and concentrations of (CH_3)_2C=CH,HCl\text{ and }(CH_3)_3CCl is 0.094 M, 0.094 M and 0.106 M respectively.

8 0
3 years ago
What are two energy alternatives to fossil fuels?
Alex17521 [72]

Explanation:

solar and energy i had to answer this one before

5 0
2 years ago
Read 2 more answers
Breaking a solid reactant into pieces results in
Hitman42 [59]

Answer:

If one of the reactants is a solid, only the particles at the surface can partake in the reaction. Breaking the reactant into smaller pieces increases the surface and more particles are exposed to the reaction mixture. This results in an increased frequency of collisions and therefore a faster rate of reaction

6 0
2 years ago
Other questions:
  • A 50.0 g sample of an unknown substance, initially at 20.2 °C, was heated with 1.55 kJ of energy. The final temperature of the s
    10·1 answer
  • Which property can be defined as the ability of a substance to be hammered into thin sheets
    13·2 answers
  • Which is true of a solute dissolved in a solvent? the solute raises the boiling point of the solvent. the solvent decreases the
    15·1 answer
  • Which of these would remove water from a river?
    11·1 answer
  • Enter the molecular formula for butane, C4H10.
    7·1 answer
  • Water at 25 °C flows at 5 ft/s through a straight cylindrical tube made of benzoic acid, with a 1-inch inside diameter. If the t
    14·1 answer
  • Select the unitless quantities: a, absorbance c, solute concentration i/i0 (ratio of emergent to incident intensity) b, pathleng
    8·1 answer
  • 14. If ExGxP=Hx) solve for A<br> A<br> В
    8·1 answer
  • Why is it important to predict consequences when decision-making?
    10·1 answer
  • Nitrogen gas plus hydrogen gas under pressure and at high temperature turns into ammonia.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!