The equation of state for a hypothetical ideal gas is known as the ideal gas law, sometimes known as the general gas equation. i.e. PV = nRT or P1V1 = P2V2.
- According to the ideal gas law, the sum of the absolute temperature of the gas and the universal gas constant is equal to the product of the pressure and volume of one gram of an ideal gas.
- Robert Boyle, Gay-Lussac, and Amedeo Avogadro's observational work served as the basis for the ideal gas law. The Ideal gas equation, which simultaneously describes every relationship, is obtained by combining all of their observations into a single statement.
- When applying the gas constant R = 0.082 L.atm/K.mol, pressure, volume, and temperature should all be expressed in units of atmospheres (atm), litres (L), and kelvin (K).
- At high pressure and low temperature, the ideal gas law basically fails because molecule size and intermolecular forces are no longer negligible but rather become significant considerations.
Learn more about ideal gas law here:
brainly.com/question/26040104
#SPJ9
Answer:
The answer to your question is:
1.- CO
2.- 0.414 moles of CO2
Explanation:
Data
2CO + O2 ⇒ 2CO2
CO = 0.414 moles
O2 = 0.418
Process
theoretical ratio CO/O2 = 2/1 = 1
experimental ratio CO/O2 = 0.414/0.418 = 0.99
Then the limiting reactant is CO
2.-
2 moles of CO --------------- 2 moles of CO2
0.414 moles of CO --------- x
x = (0.414 x 2) / 2
x = 0.414 moles of CO2
Answer:
Types of Potential Energy
Elastic Potential Energy. Anything that can act like a spring or a rubber band can have elastic potential energy. ...
Gravitational Potential Energy. There is a constant attractive force between the Earth and everything surrounding it, due to gravity. ...
Chemical Potential Energy.
(IF THIS HELPED CAN YOU GIVE ME A BRAINYLEST PLEASE?)
An: Calculate the molarity of a solution made by adding 120 g of NaOH (40.00 g/mol) to enough water to make 500.0 mL of solution. a) 4.0 M b) 6.0 M c) 1.0 ...
Explanation:
Your answer is C. Both gasoline and litter would need to be physically separated from the water, because neither bonds with the water.