Answer:
94.2 g/mol
Explanation:
Ideal Gases Law can useful to solve this
P . V = n . R . T
We need to make some conversions
740 Torr . 1 atm/ 760 Torr = 0.974 atm
100°C + 273 = 373K
Let's replace the values
0.974 atm . 1 L = n . 0.082 L.atm/ mol.K . 373K
n will determine the number of moles
(0.974 atm . 1 L) / (0.082 L.atm/ mol.K . 373K)
n = 0.032 moles
This amount is the weigh for 3 g of gas. How many grams does 1 mol weighs?
Molecular weight → g/mol → 3 g/0.032 moles = 94.2 g/mol
Answer:
Explanation: The chemical reaction is written by writing down the chemical formulas of the reactants on the left hand side and the chemical formulas of products on the right hand side separated by a right arrow.
This is a single displacement reaction in which a more reactive element displaces the less reactive element from its salt solution. Thus sodium is more reactive than Mg and thus displaces it from
.

The number of atoms of each element must be same on both sides of the reaction so as to follow the law of conservation of mass.
Thus the equation is balanced.
Answer:
C
Explanation:
Exothermic means that heat is released from the reaction
Answer:
a
Explanation:
im thinking because the water is a room temperature there shouldnt be anm immence amount og heat energy for it to have a good amount of energy tho i could be wrong because its not moving it could have no energy.