Answer:
2Li(s) + ⅛S₈(s, rhombic) + 2O₂(g) → Li₂SO₄(s)
Explanation:
A thermochemical equation must show the formation of 1 mol of a substance from its elements in their most stable state,.
The only equation that meets those conditions is the last one.
A and B are wrong , because they show Li₂SO₄ as a reactant, not a product.
C is wrong because Li⁺ and SO₄²⁻ are not elements.
D is wrong because it shows the formation of 8 mol of Li₂SO₄.
Answer:
-177.9 kJ.
Explanation:
Use Hess's law. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2Ca(s) + O2(g) → 2CaO(s) ΔH = -1269.8 kJ We need to get rid of the Ca and O2 in the equations, so we need to change the equations so that they're on both sides so they "cancel" out, similar to a system of equations. I changed the second equation. Ca(s) + CO2(g) + 1/2O2(g) → CaCO3(s) ΔH = -812.8 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ The sign changes in the second equation above since the reaction changed direction. Next, we need to multiply the first equation by two in order to get the coefficients of the Ca and O2 to match those in the second equation. We also multiply the enthalpy of the first equation by 2. 2Ca(s) + 2CO2(g) + O2(g) → 2CaCO3(s) ΔH = -1625.6 kJ 2CaO(s) → 2Ca(s) + O2(g) ΔH = +1269.8 kJ Now we add the two equations. The O2 and 2Ca "cancel" since they're on opposite sides of the arrow. Think of it more mathematically. We add the two enthalpies and get 2CaO(s) + 2CO2(g) → 2CaCO3(s) and ΔH = -355.8 kJ. Finally divide by two to get the given equation: CaO(s) + CO2(g) → CaCO3(s) and ΔH = -177.9 kJ.
Answer:
[Cl-18]⁻ & [Cl-20]⁻
Explanation:
By definition isotopes are elements with the same number of protons by different number of neutrons. Elements X-18 & X-20 have 17 protons and represent Chlorine isotopes Cl-18 & Cl-20 each with 17 protons and 18 electrons to give the isotopes a -1 oxidation state. Both isotope of chlorine have 7 electron in its valence shell and 10 electrons in its core structure. Gaining 1 electron fills the valence octet and establishes a -1 oxidation state.
Answer:

Explanation:
The two requirements for a measurement are a <u>number</u> and a <u>unit.</u>
For example, here is a measurement:
38.6 cm
The <u>number</u> is 38.6 and the <u>unit</u> is cm, or centimeters.
Therefore, both <em>number </em>and <em>unit</em> are correct.
This kind of frog is an anaxyrus fowleri